首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle swarm optimization (PSO) algorithms have been proposed to solve optimization problems in engineering design, which are usually constrained (possibly highly constrained) and may require the use of mixed variables such as continuous, integer, and discrete variables. In this paper, a new algorithm called the ranking selection-based PSO (RSPSO) is developed. In RSPSO, the objective function and constraints are handled separately. For discrete variables, they are partitioned into ordinary discrete and categorical ones, and the latter is managed and searched directly without the concept of velocity in the standard PSO. In addition, a new ranking selection scheme is incorporated into PSO to elaborately control the search behavior of a swarm in different search phases and on categorical variables. RSPSO is relatively simple and easy to implement. Experiments on five engineering problems and a benchmark function with equality constraints were conducted. The results indicate that RSPSO is an effective and widely applicable optimizer for optimization problems in engineering design in comparison with the state-of-the-art algorithms in the area.  相似文献   

2.
This paper presents an extension to the basic particle swarm optimization approach for the solution of constrained engineering design optimization problems. The approach takes advantage of the PSO ability to find global optimum in problems with complex design spaces while directly enforcing feasibility of constraints using an augmented Lagrange multiplier method. Details in the algorithm implementation and properties are presented and the effectiveness of the approach is illustrated in different benchmark structural optimization test cases. Results show the ability of the proposed methodology to find better solutions for structural optimization tasks as compared to other optimization algorithms.  相似文献   

3.
In the real-world applications, most optimization problems are subject to different types of constraints. These problems are known as constrained optimization problems (COPs). Solving COPs is a very important area in the optimization field. In this paper, a hybrid multi-swarm particle swarm optimization (HMPSO) is proposed to deal with COPs. This method adopts a parallel search operator in which the current swarm is partitioned into several subswarms and particle swarm optimization (PSO) is severed as the search engine for each sub-swarm. Moreover, in order to explore more promising regions of the search space, differential evolution (DE) is incorporated to improve the personal best of each particle. First, the method is tested on 13 benchmark test functions and compared with three stateof-the-art approaches. The simulation results indicate that the proposed HMPSO is highly competitive in solving the 13 benchmark test functions. Afterward, the effectiveness of some mechanisms proposed in this paper and the effect of the parameter setting were validated by various experiments. Finally, HMPSO is further applied to solve 24 benchmark test functions collected in the 2006 IEEE Congress on Evolutionary Computation (CEC2006) and the experimental results indicate that HMPSO is able to deal with 22 test functions.  相似文献   

4.
李全耀  沈艳霞 《控制与决策》2022,37(12):3190-3196
针对灰狼优化算法(GWO)存在收敛精度不高、易陷入局部最优的不足,提出一种基于教与学的混合灰狼优化算法(HGWO).首先,采用佳点集理论进行种群初始化,提高初始种群的遍历性;其次,提出一种非线性控制参数策略,在迭代前期增加全局搜索能力,避免算法陷入局部最优,在迭代后期增加局部开发能力,提高收敛精度;最后,结合教与学算法(TLBO)和粒子群优化算法,修改原位置更新公式以优化算法搜索方式,从而提升算法的收敛性能.为验证HGWO算法的有效性,选取9种标准测试函数,将HGWO算法、GWO算法以及其他群体智能优化算法和其他改进GWO算法进行仿真实验.实验结果表明,所提出的HGWO算法性能优于GWO算法和其他群体智能优化算法,且在改进算法中具有一定优势.  相似文献   

5.
In this paper, we propose a method for solving constrained optimization problems using interval analysis combined with particle swarm optimization. A set inverter via interval analysis algorithm is used to handle constraints in order to reduce constrained optimization to quasi unconstrained one. The algorithm is useful in the detection of empty search spaces, preventing useless executions of the optimization process. To improve computational efficiency, a space cleaning algorithm is used to remove solutions that are certainly not optimal. As a result, the search space becomes smaller at each step of the optimization procedure. After completing pre-processing, a modified particle swarm optimization algorithm is applied to the reduced search space to find the global optimum. The efficiency of the proposed approach is demonstrated through comprehensive experimentation involving 100 000 runs on a set of well-known benchmark constrained engineering design problems. The computational efficiency of the new method is quantified by comparing its results with other PSO variants found in the literature.  相似文献   

6.
带自适应感知能力的粒子群优化算法   总被引:1,自引:0,他引:1  
提出一种求解约束优化问题的改进粒子群优化算法。它利用可行性判断规则处理约束条件,更新个体最优解和全局最优解。通过为粒子赋予自适应感知能力,算法能较好地平衡全局和局部搜索,且有能力跳出局部极值,防止早熟。边界附近粒子的感知结果被用来修正其飞行速度以加强算法对约束边界的搜索。实验结果表明,新算法收敛速度快,寻优能力强,能很好地求解约束优化问题。  相似文献   

7.
一种求解高维约束优化问题的γ-PSO算法   总被引:1,自引:0,他引:1  
PSO算法是一种随机搜索的群体智能算法,在求解高维约束优化问题,尤其是在约束条件较多时,PSO算法易陷入局部极值且收敛速度慢。针对上述问题,对PSO算法进行了改进,提出了γ-PSO算法,把PSO算法的随机数由(0,1)扩展到(-1,1),这样加大了粒子飞行速度和飞行方向的多样性,从而使PSO算法具有摆脱局部极值的能力。对γ-PSO算法进行了求解高维约束优化问题的实验,实验结果表明γ-PSO算法能收敛到全局最优值,收敛性能明显优于其他改进的PSO算法和其他优化算法。  相似文献   

8.
求解工程约束优化问题的PSO-ABC混合算法*   总被引:1,自引:1,他引:0  
针对包含约束条件的工程优化问题,提出了基于人工蜂群的粒子群优化PSO-ABC算法。将PSO中较优的粒子作为ABC算法的蜜源,并使用禁忌表存储其局部极值,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性规则进行约束处理,将粒子种群分为可行子群和不可行子群,并在ABC算法产生蜜源的过程中保留部分较优的可行解和不可行解的信息,弥补了可行性规则处理最优点位于约束边界附近的问题时存在的不足。四个典型工程优化设计的实验结果表明,该算法能够寻得更优的约束最优化解,且稳健性更强。  相似文献   

9.
In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.  相似文献   

10.
针对粒子群算法易跳过全局极值,且只能求解连续性问题的缺点,提出离散复形法局部搜索的思想,来有效提高粒子群算法在离散型问题中的搜索性能。针对粒子群算法易陷入局部极小的缺点,引入自适应粒子迁徙操作保证粒子的多样性,有效避免陷入局部收敛。对采用CVaR度量风险、构建有交易费用和限制证券比例的均值-CVaR投资组合模型进行仿真实验,实验结果验证了算法的有效性。将改进的粒子群算法应用到求解均值-CVaR模型的投资组合问题,与其他算法相比,该方法精度更高、性能更稳定。  相似文献   

11.
Increasing attention is being paid to solve constrained optimization problems (COP) frequently encountered in real-world applications. In this paper, an improved vector particle swarm optimization (IVPSO) algorithm is proposed to solve COPs. The constraint-handling technique is based on the simple constraint-preserving method. Velocity and position of each particle, as well as the corresponding changes, are all expressed as vectors in order to present the optimization procedure in a more intuitively comprehensible manner. The NVPSO algorithm [30], which uses one-dimensional search approaches to find a new feasible position on the flying trajectory of the particle when it escapes from the feasible region, has been proposed to solve COP. Experimental results showed that searching only on the flying trajectory for a feasible position influenced the diversity of the swarm and thus reduced the global search capability of the NVPSO algorithm. In order to avoid neglecting any worthy position in the feasible region and improve the optimization efficiency, a multi-dimensional search algorithm is proposed to search within a local region for a new feasible position. The local region is composed of all dimensions of the escaped particle’s parent and the current positions. Obviously, the flying trajectory of the particle is also included in this local region. The new position is not only present in the feasible region but also has a better fitness value in this local region. The performance of IVPSO is tested on 13 well-known benchmark functions. Experimental results prove that the proposed IVPSO algorithm is simple, competitive and stable.  相似文献   

12.
Stochastic optimization algorithms like genetic algorithms (GAs) and particle swarm optimization (PSO) algorithms perform global optimization but waste computational effort by doing a random search. On the other hand deterministic algorithms like gradient descent converge rapidly but may get stuck in local minima of multimodal functions. Thus, an approach that combines the strengths of stochastic and deterministic optimization schemes but avoids their weaknesses is of interest. This paper presents a new hybrid optimization algorithm that combines the PSO algorithm and gradient-based local search algorithms to achieve faster convergence and better accuracy of final solution without getting trapped in local minima. In the new gradient-based PSO algorithm, referred to as the GPSO algorithm, the PSO algorithm is used for global exploration and a gradient based scheme is used for accurate local exploration. The global minimum is located by a process of finding progressively better local minima. The GPSO algorithm avoids the use of inertial weights and constriction coefficients which can cause the PSO algorithm to converge to a local minimum if improperly chosen. The De Jong test suite of benchmark optimization problems was used to test the new algorithm and facilitate comparison with the classical PSO algorithm. The GPSO algorithm is compared to four different refinements of the PSO algorithm from the literature and shown to converge faster to a significantly more accurate final solution for a variety of benchmark test functions.  相似文献   

13.
One of the fundamental difficulties in engineering design is the multiplicity of local solutions. This has triggered much effort in the development of global search algorithms. Globality, however, often has a prohibitively high numerical cost for real problems. A fixed cost local search, which sequentially becomes global, is developed in this work. Globalization is achieved by probabilistic restarts. A spacial probability of starting a local search is built based on past searches. An improved Nelder–Mead algorithm is the local optimizer. It accounts for variable bounds and nonlinear inequality constraints. It is additionally made more robust by reinitializing degenerated simplexes. The resulting method, called the Globalized Bounded Nelder–Mead (GBNM) algorithm, is particularly adapted to tackling multimodal, discontinuous, constrained optimization problems, for which it is uncertain that a global optimization can be afforded. Numerical experiments are given on two analytical test functions and two composite laminate design problems. The GBNM method compares favorably with an evolutionary algorithm, both in terms of numerical cost and accuracy.  相似文献   

14.
一种动态分级的混合粒子群优化算法   总被引:3,自引:0,他引:3  
针对粒子群算法早熟收敛和搜索精度不高的问题,提出一种动态分级的混合粒子群优化算法.该算法采取3种级别的并行粒子群算法,分别用于全局搜索和局部搜索及二者的结合,并根据搜索阶段动态调整各种级别中并行变量的数目.在全局搜索中,将混沌机制引入算法中以增强算法的全局搜索能力;在局部搜索中,采用单纯形法对适应度最优解进行局部寻优.仿真实验表明,该算法比其他优化算法具有更好的性能.  相似文献   

15.
In recent years, particle swarm optimization (PSO) has extensively applied in various optimization problems because of its simple structure. Although the PSO may find local optima or exhibit slow convergence speed when solving complex multimodal problems. Also, the algorithm requires setting several parameters, and tuning the parameters is a challenging for some optimization problems. To address these issues, an improved PSO scheme is proposed in this study. The algorithm, called non-parametric particle swarm optimization (NP-PSO) enhances the global exploration and the local exploitation in PSO without tuning any algorithmic parameter. NP-PSO combines local and global topologies with two quadratic interpolation operations to increase the search ability. Nineteen (19) unimodal and multimodal nonlinear benchmark functions are selected to compare the performance of NP-PSO with several well-known PSO algorithms. The experimental results showed that the proposed method considerably enhances the efficiency of PSO algorithm in terms of solution accuracy, convergence speed, global optimality, and algorithm reliability.  相似文献   

16.
Many engineering design problems can be formulated as constrained optimization problems which often consist of many mixed equality and inequality constraints. In this article, a hybrid coevolutionary method is developed to solve constrained optimization problems formulated as min–max problems. The new method is fast and capable of global search because of combining particle swarm optimization and gradient search to balance exploration and exploitation. It starts by transforming the problem into unconstrained one using an augmented Lagrangian function, then using two groups to optimize different components of the solution vector in a cooperative procedure. In each group, the final stage of the search procedure is accelerated by via a simple local search method on the best point reached by the preceding exploration based search. We validated the effectiveness and robustness of the proposed algorithm using several engineering problems taken from the specialised literature.  相似文献   

17.
Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods.  相似文献   

18.
粒子群优化(PSO)算法是一种新兴的基于群智能搜索的优化技术,它是通过粒子追随个体最优解和群体最优解来完成优化,且算法简单、易实现、参数少,具有较强的全局优化能力,可有效应用于科学与工程实践中。文中综述了PSO各种改进技术、研究热点问题及其应用进展情况并指出了PSO的发展趋势及未来研究方向。  相似文献   

19.
Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.  相似文献   

20.
Crew scheduling problem is the problem of assigning crew members to the flights so that total cost is minimized while regulatory and legal restrictions are satisfied. The crew scheduling is an NP-hard constrained combinatorial optimization problem and hence, it cannot be exactly solved in a reasonable computational time. This paper presents a particle swarm optimization (PSO) algorithm synchronized with a local search heuristic for solving the crew scheduling problem. Recent studies use genetic algorithm (GA) or ant colony optimization (ACO) to solve large scale crew scheduling problems. Furthermore, two other hybrid algorithms based on GA and ACO algorithms have been developed to solve the problem. Computational results show the effectiveness and superiority of the proposed hybrid PSO algorithm over other algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号