首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the performance of AlN/TiN coated carbide tool during milling of STAVAX® (modified AISI 420 stainless steel) at a low speed of 50 m/min under conventional flood and mist lubrication. Abrasion, chipping, fracture resulting in the formation of crater and catastrophic failure are the wear mechanisms encountered during machining under flood lubrication. The flank wear, and the likeliness of the cutting tool to fracture, chip and fail prematurely increased with an increase in the hardness of the workpiece and a reduction in the helix angle of the tool. Small quantity of mineral oil sprayed in mist form was effective in reducing the flank wear and severity of abrasion wear, and preventing the formation of crater and the occurrence of catastrophic failure. In milling 35 and 55 HRC-STAVAX® using a feed rate of 0.4 mm/tooth and a depth of cut of 0.2 mm under mist lubrication, the cutting edge of the 25° and 40° helix angle tools only suffered small-scale edge chipping and abrasive wear throughout the entire duration of testing. The influence of the ductility of the workpiece on the surface finish and the effectiveness of mist lubricant in improving the surface finish are also discussed.  相似文献   

2.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

3.
氧化锆生物陶瓷铣削的刀具磨损   总被引:1,自引:0,他引:1  
为了研究完全烧结氧化锆陶瓷铣削过程中金刚石刀具的磨损及其对切削过程的影响,进行了氧化锆铣削实验。分析了刀具磨损带的扩展过程以及切削力随刀具磨损过程的变化规律。通过观测切削表面微观形貌随刀具磨损过程的演变,对刀具磨损与切削模式之间的关系进行了探讨,最后揭示了刀具磨损机理。研究结果表明:铣削氧化锆陶瓷时刀具磨损随切削过程从刃口扩展到后刀面,同时切削模式从延脆混合去除转变为完全脆性去除,刀具磨损模式是崩刃、剥落及石墨化磨损。  相似文献   

4.
With wide applications of nickel-based superalloys in strategic fields, it has become increasingly necessary to evaluate the performance of different advanced cutting tools for machining such alloys. With a view to recommend a suitable cutting tool, the present work investigated various machinability characteristics of Incoloy 825 using an uncoated tool, chemical vapor deposition (CVD) of a bilayer of TiCN/Al2O3, and physical vapor deposition (PVD) of alternate layers of TiAlN/TiN-coated tools under varying machining conditions. The influence of cutting speed (51, 84, and 124 m/min) as well as feed (0.08, 0.14, and 0.2 mm/rev) was comparatively evaluated on surface roughness, cutting temperature, cutting force, coefficient of friction, chip thickness, and tool wear using different cutting tools. Although the CVD-coated tool was not useful in decreasing surface roughness and temperature, a significant reduction in cutting force and tool wear could be achieved with the same coated tool under a high cutting speed of 124 m/min. On the other hand, the PVD-coated tool outperformed the other tools in terms of machinability characteristics. This might be attributed to the excellent antifriction and antisticking property of TiN and good toughness due to the multilayer configuration in combination with a thermally resistant TiAlN phase. Adhesion, abrasion, edge chipping, and nose wear were the prominent wear mechanisms of the uncoated tool, followed by the CVD-coated tool. However, remarkable resistance to such wear was evident with the PVD TiAlN/TiN multilayer-coated tool.  相似文献   

5.
6.
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4 V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4 V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4 V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.  相似文献   

7.
Silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites have attracted considerable interest as potential materials due to their excellent engineering properties. Many research works have been done associated with turning SiCp/Al in the past. However, it still lacks of experience on milling of SiCp/Al composites. This paper presents an exploratory study on precision milling of SiCp/Al composites with higher volume fraction (SiCp, 65 %) and larger particle size. The experiments were conducted on a Kern MMP 2522, high-precision micromilling machine center. A single flute monocrystalline diamond end mill was used to mill straight grooves with cutting parameters in a few micros. The machined surface quality including surface roughness and surface topography were studied. The cutting mechanisms of SiC particle and tool wear characters were also investigated. The results showed that mirror-like surface with surface roughness around 0.1 μm Ra can be achieved by precision milling with small parameters in the range of a few micros. Most of the SiC reinforcements were cut in partial ductile way with microfractures and cracks on the machined surface; tool wear included chipping and cleavage on monocrystalline diamond edge. A large flank wear on tool bottom face was observed and suspected to be caused by coaction of chemical transition and mechanical abrasion.  相似文献   

8.
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.  相似文献   

9.
In the present study, high-speed face milling of AISI H13 hardened steel was conducted to investigate the cutting performance of coated carbide tools. The characteristics of chip morphology, tool life, tool wear mechanisms, and surface roughness were analyzed and compared for different cutting conditions. It was found that as the cutting speed increased, the chip morphology evolved in different ways under different milling conditions (up, down, and symmetric milling). Individual saw-tooth segments and sphere-like chip formed at the cutting speed of 2,500 m/min. Owing to the relatively low mechanical load, longest tool life can be obtained in up milling when the cutting speed was no more than 1,000 m/min. As the cutting speed increased over 1,500 m/min, highest tool life existed in symmetric milling. When the cutting speed was 500 m/min, owing to the higher mechanical load, the flaked region on the tool rake face in symmetric milling was much larger than that in up and down milling. There was no obvious wear on the tool rake face at the cutting speed of 2,500 m/min due to the short tool-chip contact length. In symmetric milling, the delamination of tool material, which did not occur in up and down milling, was caused by the relatively large cutting force. Abrasion had great effect on the tool flank wear in symmetric milling. With the increment of cutting speed, surface roughness decreased first and then increased rapidly. Lowest surface roughness can be obtained at the cutting speed of about 1,500 m/min.  相似文献   

10.
In this paper, dry machining experiment of Ti-6Al-4 V was carried out to investigate the machining performance of a grooved tool in terms of its wear mechanisms and the effects of cutting parameters (cutting speed, feed rate, and cutting depth) on tool life and surface roughness of the machined workpiece. The results showed that chip-groove configuration substantially improved the machining performance of cutting tool. The main wear mechanisms of the grooved tool were adhesive wear, stripping wear, crater wear, and dissolution-diffusion wear. The resistance to chipping was enhanced due to the decrease of contact pressure of tool-chip interface. And the resistance to plastic deformation of tool nose was weakened at the cutting speed of more than 60 m/min. The appropriate cutting speed and feed rate were less than 70 m/min and 0.10 mm/r, respectively. With cutting speed increasing, the surface roughness of machined workpiece decreased. A high feed rate helped the formation of higher surface roughness except 0.21 mm/r. When cutting depth increased, tool nose curvature and phase transformation of workpiece material had great impact on surface roughness.  相似文献   

11.
The cutting performance, failure types, and mechanisms of the graded nano-composite ceramic tools were investigated during dry face milling of Inconel 718. In these tests, round ceramic inserts were used at cutting speeds ranging from 500 to 1,100 m/min. The structures of the chips, cutting forces, and surface roughness were also examined. Failure surfaces of the tools were characterized by scanning electron microscopy. The results showed that the graded tool possessed a self-sharpening characteristic and exhibited higher cutting performance compared with the homogeneous ones, as a result of its enhanced mechanical properties, higher abrasive wear, and fracture resistance. The failure mechanisms of the tools involved chipping, flaking, notch wear, abrasive wear, and adhesive wear. The mechanisms responsible for the higher cutting performance of the graded tools were inferred to be the formation of compressive residual stress in the surface layer induced by the graded compositional structure.  相似文献   

12.
High-speed face milling experiments of AISI H13 steel (46–47 HRC) with cubic boron nitride (CBN) tools were conducted in order to identify the characteristics of cutting forces, chip formation, and tool wear in a wide range of cutting speed (200–1,200 m/min). The velocity effects are focused on in the present study. It was found that, at the cutting speed of 800 m/min, which can be considered as a critical value, relatively low mechanical load, relatively low degree of chip segmentation, and relatively long tool life can be obtained at the same time. Both the cutting forces and the degree of chip segmentation firstly decrease and then increase with the cutting speed, while the tool life exhibits the opposite trend. By means of analyzing the wear mechanisms of tools tested under different cutting speeds, it was found that, as the cutting speed increases, the influences of fracture and chipping resulting from mechanical load on tool wear were reduced, while the influences of adhesion, oxidation, and thermal crack accelerated by high cutting temperature became greater. There exist obvious correlations among cutting forces, chip formation, and tool wear.  相似文献   

13.
In this paper, a series of milling tests were carried out in order to identify the effects of cutting speed on cutting forces and tool wear when high-speed face milling Inconel 718 with Sialon ceramic tools. Both down-milling and up-milling operations were conducted. The cutting forces, tool wear morphologies, and the tool failure mechanisms in a wide range of cutting speeds (600–3,000 m/min) were discussed. Results showed that the resultant cutting forces firstly decrease and then increase with the increase of cutting speed. Under relatively lower cutting speeds (600 and 1,000 m/min), the dominant wear patterns is notching. Further increasing the speed to more than 1,400 m/min, the notching decreases a lot and flank wear becomes the dominant wear pattern. In general, at the same cutting speed, flaking on the rake face and notching on the flank face are more serious in down-milling operation than that in up-milling operation with the same metal removal volume. However, the surface roughness values for down-milling are lower than that for up-milling.  相似文献   

14.
To investigate the influence of the geometric structure of coated cemented carbide twist drills on the drill tool life, drilling experiments of 42CrMo steel were carried out at various cutting parameters. The geometric structure parameters of the specially manufactured drill bits were designed by the multifactor orthogonal experiment method. The effects of cutting edge preparation, drill point geometry, and flute geometry on the tool wear were investigated by the range analysis and variance analysis. And their effects on chip pattern were also studied. Then the influence of cutting parameters on the tool life was investigated. Based on these investigations and extending the tool life, the optimized geometric structure was the honed cutting edge with a radius of 0.06 mm and conventional conical flank, and the corresponding cutting parameters were 80 m/min and 0.18 mm/rev. At last, the tool wear characteristics were discussed and the main wear mechanisms were abrasive wear, adhesive wear, coating exfoliation, and tipping.  相似文献   

15.
To investigate the edge chipping during drilling of the CFRP/Ti stack with carbide cemented tools, a drilling experiment was carried out and a tool failure model was proposed. Thrust force, drilling temperature, and tool wear were analyzed. A tool stressing model and a tool failure model of edge chipping were constructed respectively. On the basis of these, the prediction model on the edge chipping was established to forecast the failure time. Drilling temperature, Vickers hardness, and cutting speed were considered during the prediction model building. The results demonstrate that adhesive wear has a great influence on the edge chipping. The damage of adhesive wear for tool rake face leads to the load variation on rake face and the initial crack. Under the action of shear stress, the crack starts at rake face and then expands to the flank face, resulting in tool edge chipping. The affinity interaction (between titanium alloy with carbide cemented) and the thermal residual stress are two critical factors for tool edge chipping. Tear easily occurs inside the binding phase or at the boundary between hard phase and binder phase. As the drilling temperature increases, the hardness of the carbide cemented will gradually decrease. The prediction result of failure time is similar to the experimental result, and the effectiveness of the prediction model is verified.  相似文献   

16.
The machinability of difficult-to-cut aerospace alloys can be enhanced by the rapid development of cutting tool materials that can withstand machining at high-speed conditions. The performance of nano-grain size ceramic tool materials were evaluated when machining nickel base, Inconel 718, in terms of tool life, tool failure modes and wear mechanisms as well as component forces generated under different roughing conditions. Comparison tests were carried out with commercially available ceramic tool materials of micron-grain composition.

The test results show that the micron grain size commercially available tool materials generally gave the longest tool life. The dominant failure mode is nose wear, while some of the nano-ceramic tools were rejected mainly due to chipping at the cutting edge. This suggests that physical properties and mechanical stability of the cutting edge of the ceramic tools influence their overall performance. It is also evident that chemical compositions of the tool materials played a significant role in their failure. The alumina base ceramics are more susceptible to premature fracture than the silicon nitride base ceramics with higher fracture toughness.  相似文献   

17.
Dry machining is being recognized as ecological machining due to its less environmental impact and manufacturing cost. However, the choice of dry machining is mainly influenced by the workpiece material properties, machining operation and cutting conditions. The recent emergence of austempered ductile iron (ADI) can be considered a significant economic advantage to the increasing industrial demand for cost- and weight-efficient materials. However, due to its microstructure-induced inherent properties, ADI is considered hard-to-machine material. Thus, the dry drilling of ADI is investigated in this paper. The ADI material used in the present study is produced using an innovative process route for near net shape casting production. Drilling experiments are conducted on a DMU80P Deckel Maho five-axis machining centre using PVD-coated carbide tools under dry cutting environment. The dry drilling of ADI under different cutting conditions is evaluated in terms of specific cutting force and tool wear analysis. The influence of cutting conditions on chip morphology and surface roughness is also investigated. The experimental results revealed that the combination of the low feed rate and higher cutting speed leads to the higher mechanical and thermal loads on the tool's cutting edge, resulting in higher specific cutting force values. This behaviour is further supported by the chip morphology analysis, which revealed the formation of segmented chips at higher cutting speed with segment spacing increase with an increase in feed rate. Depending upon the cutting parameters, different modes of tool failures including crater wear, flank wear, chipping, breakage and built-up edge were observed. Surface roughness analysis revealed the influence of tool wear and chip morphology on the machined surface finish.  相似文献   

18.
Geometry of cutting edge has great influence on performance and reliability of modern precision cutting tools. In this study, two-dimensional finite element model of orthogonal cutting of Fe–Cr–Ni stainless steel has been built to optimize the geometric parameters of chamfered edge. A method to measure the chip curl radius has been proposed. The effect of cutting edge geometric parameters on tool stress and chip curl radius has been analyzed. Then, the chamfered edge parameters have been optimized based on numerical simulation results. It finds that, keeping the equal material removal rate, the optimal geometric parameters of chamfered edge for rough machining Fe–Cr–Ni stainless steel are that the rake angle is from 16° to 17°, and the chamfer length is from 60 to 70 μm. Small (large) rake angle combined with small (large) chamfer length is more reasonable to reduce the tool stress. When the length of land is approximately equal to undeformed chip thickness and the rake angle is larger than 15°, the chip curl radius is minimal. The groove type with large radio of width to depth should be used in the chip breaking based on the optimization results.  相似文献   

19.
Free abrasive wire saw machining of ceramics   总被引:1,自引:1,他引:0  
Currently, many kinds of ceramics are used in advanced industrial fields due to their superior mechanical properties, such as thermal, wear, corrosion resistance, and lightweight features. Wire saw machining ceramic (Al2O3) was investigated by ultrasonic vibration in this study. Taguchi approach is a powerful design tool for high-quality systems. Material removal rate, wafer surface roughness, steel wire wear, kerf width, and flatness during machining ceramic were selected as quality character factors to optimize the machining parameters (swinging angle, concentration, mixed grain and direction of ultrasonic vibration) to get the larger-the-better (material removal rate) and the smaller-the-better (wafer surface roughness, steel wire wear, kerf width and flatness) machining characteristics by Taguchi method. The results indicated that wire swinging produces a higher material removal rate and good wafer surface roughness. Ultrasonic vibration improved material removal rate, without affecting the flatness under different machining conditions. Experimental results show that the optimal wire saw machining parameters based on grey relational analysis can be determined effectively and material removal rate increases from 2.972 to 3.324 mm2/min, wafer surface roughness decreases from 0.37 to 0.34 μm, steel wire wear decreases from 0.78 to 0.77 μm, kerf width decreases from 0.352 to 0.350 mm, and flatness decreases from 7.51 to 7.22 μm are observed.  相似文献   

20.
Last years analytical or finite element models of milling become more efficient and focus on more physical aspects, nevertheless the milling process is still experimentally unknown on a wide range of use. This paper propose to analyse with accuracy milling operations by investigating the cutting forces values, shape of cutting forces curves obtained for different cutting speeds, and related phenomena as tool wear or tool run-out. These detailed experimental data in milling constitute a suitable experimental basis available to develop predictive machining modelling. All the tests have been conducted on the 304-L stainless steel in many cutting configurations and for different tool geometries. The machinability of the 304-L stainless steel with different tools geometries and configurations in shoulder milling is defined by three working zones: a conventional zone permitting stable cutting (low cutting speed; under 200–250 m.min?1), a dead zone (unfavourable for cutting forces level and cutting stability; between 250 and 450 m.min?1), and a high speed machining zone (high cutting speed; up to 450–500 m.min?1). All the used criteria (cutting forces, chips, wear) confirm the existence of these different zones and a correlation is proposed with cutting perturbations as tool run-out, cutting instability, ploughing, and abrasive wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号