首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for topology optimization of structures under harmonic excitations   总被引:1,自引:0,他引:1  
This paper deals with topology optimization of large-scale structures with proportional damping subjected to harmonic excitations. A combined method (CM) of modal superposition with model order reduction (MOR) for harmonic response analysis is introduced. In the method, only the modes corresponding to a frequency range which is a little bigger than that of interest are used for modal superposition, the contribution of unknown higher modes is complemented by a MOR technique. Objective functions are the integral of dynamic compliance of a structure, and that of displacement amplitude of a certain user-defined degree of freedom in the structure, over a range of interested frequencies. The adjoint variable method is applied to analyze sensitivities of objective functions and the accuracy of the sensitivity analyses can also be ensured by CM. Topology optimization procedure is illustrated by three examples. It is shown that the topology optimization based on CM not only remarkably reduce CPU time, but also ensure accuracy of results.  相似文献   

2.
This work is focused on the structural topology optimization methods related to dynamic responses under harmonic base acceleration excitations. The uniform acceleration input model is chosen to be the input form of base excitations. In the dynamic response analysis, we propose using the large mass method (LMM) in which artificial large mass values are attributed to each driven nodal degree of freedom (DOF), which can thus transform the base acceleration excitations into force excitations. Mode displacement method (MDM) and mode acceleration method (MAM) are then used to calculate the harmonic responses and the design sensitivities due to their balances between computing efficiency and accuracy especially when frequency bands are taken into account. A density based topology optimization method of minimizing dynamic responses is then formulated based on the integration of LMM and MDM or MAM. Moreover, some particular appearances such as the precision of response analysis using MDM or MAM, and the duplicated frequencies are briefly discussed. Numerical examples are finally tested to verify the accuracy of the proposed schemes in dynamic response analysis and the quality of the optimized design in improving dynamic performances.  相似文献   

3.
This work is focused on the topology optimization related to harmonic responses for large-scale problems. A comparative study is made among mode displacement method (MDM), mode acceleration method (MAM) and full method (FM) to highlight their effectiveness. It is found that the MDM results in the unsatisfactory convergence due to the low accuracy of harmonic responses, while MAM and FM have a good accuracy and evidently favor the optimization convergence. Especially, the FM is of superiority in both accuracy and efficiency under the excitation at one specific frequency; MAM is preferable due to its balance between the computing efficiency and accuracy when multiple excitation frequencies are taken into account.  相似文献   

4.
Variability of load magnitude/direction is a most significant source of uncertainties in practical engineering. This paper investigates robust topology optimization of structures subjected to uncertain dynamic excitations. The unknown-but-bounded dynamic loads/accelerations are described with the non-probabilistic ellipsoid convex model. The aim of the optimization problem is to minimize the absolute dynamic compliance for the worst-case loading condition. For this purpose, a generalized compliance matrix is defined to construct the objective function. To find the optimal structural layout under uncertain dynamic excitations, we first formulate the robust topology optimization problem into a nested double-loop one. Here, the inner-loop aims to seek the worst-case combination of the excitations (which depends on the current design, and is usually to be found by a global optimization algorithm), and the outer-loop optimizes the structural topology under the found worst-case excitation. To tackle the inherent difficulties associated with such an originally nested formulation, we convert the inner-loop into an inhomogeneous eigenvalue problem using the optimality condition. Thus the double-loop problem is reformulated into an equivalent single-loop one. This formulation ensures that the strict-sense worst-case combination of the uncertain excitations for each intermediate design be located without resorting to a time-consuming global search algorithm. The sensitivity analysis of the worst-case objective function value is derived with the adjoint variable method, and then the optimization problem is solved by a gradient-based mathematical programming method. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed framework.  相似文献   

5.
This paper investigates the optimal distribution of damping material in vibrating structures subject to harmonic excitations by using topology optimization method. Therein, the design objective is to minimize the structural vibration level at specified positions by distributing a given amount of damping material. An artificial damping material model that has a similar form as in the SIMP approach is suggested and the relative densities of the damping material are taken as design variables. The vibration equation of the structure has a non-proportional damping matrix. A system reduction procedure is first performed by using the eigenmodes of the undamped system. The complex mode superposition method in the state space, which can deal with the non-proportional damping, is then employed to calculate the steady-state response of the vibrating structure. In this context, an adjoint variable scheme for the response sensitivity analysis is developed. Numerical examples are presented for illustrating validity and efficiency of this approach. Impacts of the excitation frequency as well as the damping coefficients on topology optimization results are also discussed.  相似文献   

6.
Structural and Multidisciplinary Optimization - The integrated optimization of component layout and structural topology is studied in this paper to improve the dynamic performance of the...  相似文献   

7.
This paper proposes a modified gradient projection method (GPM) that can solve the structural topology optimization problem including density-dependent force efficiently. The particular difficulty of the considered problem is the non-monotonicity of the objective function and consequently the optimization problem is not definitely constrained. Transformation of variables technique is used to eliminate the constraints of the design variables, and thus the volume is the only possible constraint. The negative gradient of the objective function is adopted as the most promising search direction when the point is inside the feasible domain, while the projected negative gradient is used instead on condition that the point is on the hypersurface of the constraint. A rational step size is given via a self-adjustment mechanism that ensures the step size is a good compromising between efficiency and reliability. Furthermore, some image processing techniques are employed to improve the layouts. Numerical examples with different prescribed volume fractions and different load ratios are tested respectively to illustrate the characteristics of the topology optimization with density-dependent load.  相似文献   

8.
This paper investigates the problem of containment control for coupled harmonic oscillators with multiple leaders under directed topology. Using tools from matrix, graph and stability theories, necessary and sufficient conditions are obtained for coupled harmonic oscillators under continuous-time and sampled-data-based protocols, respectively. When the continuous-time protocol is used, it is proved that every follower will ultimately converge to the convex hull spanned by the leaders if and only if there exists at least one leader that has a directed path to that follower at any time. When the sampled-data-based protocol is used, it is shown that the containment can be achieved if and only if: (1) an appropriate sampling period is chosen and (2) for every follower, there exists at least one leader that has a directed path to that follower at any time. And we also give the containment conditions for coupled harmonic oscillators under undirected topology as a special case. Finally, numerical simulations are presented to illustrate the theoretical findings.  相似文献   

9.
10.
Structural and Multidisciplinary Optimization - One challenge of solving topology optimization problems under harmonic excitation is that usually a large number of displacement and adjoint...  相似文献   

11.
The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented first,and the Lagrange multipliers' soution method of problems with multiple constraints is improved by the dual method.Then the iterative formulas of the guide-weight method for topology optimization problems of minimum compliance and minimum weight are derived and coresponding numerical examples are...  相似文献   

12.
This study develops a new design method called the constraint force design method, which allows topology optimization for planar rigid-body mechanisms. In conventional mechanism synthesis methods, the kinematics of a mechanism are analytically derived and the positions and types of joints of a fixed configuration (hereafter the topology) are optimized to obtain an optimal rigid-body mechanism tracking the intended output trajectory. Therefore, in conventional methods, modification of the configuration or topology of joints and links is normally considered impossible. In order to circumvent the fixed topology limitation in optimally designing rigid-body mechanisms, we present the constraint force design method. This method distributes unit masses simulating revolute or prismatic joints depending on the number of assigned degrees of freedom, analyzes the kinetics of unit masses coupled with constraint forces, and designs the existence of these constraint forces to minimize the root-mean-square error of the output paths of synthesized linkages and a target linkage using a genetic algorithm. The applicability and limitations of the newly developed method are discussed in the context of its application to several rigid-body synthesis problems.  相似文献   

13.
A simple and commonly used approximate technique of solving the normalized equations of motion of a nonclassically damped linear second-order system is to decouple the system equations by neglecting the offdiagonal elements of the normalized damping matrix, and then to solve the decoupled equations. This approximate technique can result in a solution with large errors, even when the off-diagonal elements of the normalized damping matrix are small. Large approximation errors can arise in lightly damped systems under harmonic excitations when some of the undamped natural frequencies of the system are close to the excitation frequency. In this article, a rigorous analysis of the approximation error in lightly damped systems is given. Easy-to-check conditions under which neglecting the off-diagonal elements of the normalized damping matrix can result in large approximation errors are presented.  相似文献   

14.
15.
Structural and Multidisciplinary Optimization - In this paper, we propose a method for stress-constrained topology optimization of continuum structure sustaining harmonic load excitation using the...  相似文献   

16.
This paper presents a stochastic direct search method for topology optimization of continuum structures. In a systematic approach requiring repeated evaluations of the objective function, the element exchange method (EEM) eliminates the less influential solid elements by switching them into void elements and converts the more influential void elements into solid resulting in an optimal 0–1 topology as the solution converges. For compliance minimization problems, the element strain energy is used as the principal criterion for element exchange operation. A wider exploration of the design space is assured with the use of random shuffle while a checkerboard control scheme is used for detection and elimination of checkerboard regions. Through the solution of multiple two- and three-dimensional topology optimization problems, the general characteristics of EEM are presented. Moreover, the solution accuracy and efficiency of EEM are compared with those based on existing topology optimization methods.  相似文献   

17.
A topological derivative method for topology optimization   总被引:2,自引:2,他引:2  
We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures.  相似文献   

18.
Structural and Multidisciplinary Optimization - This study proposes a non-deterministic robust topology optimization of ply orientation for multiple fiber-reinforced plastic (FRP) materials, such...  相似文献   

19.
Structural and Multidisciplinary Optimization - This paper is concerned with the topological optimization of elastic structures, with the goal of minimizing the compliance and/or mass of the...  相似文献   

20.
Recent advances in level-set-based shape and topology optimization rely on free-form implicit representations to support boundary deformations and topological changes. In practice, a continuum structure is usually designed to meet parametric shape optimization, which is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. In order to solve the disadvantage of traditional step-type structural optimization, a unified optimization method which can fulfill the structural topology, shape, and sizing optimization at the same time is presented. The unified structural optimization model is described by a parameterized level set function that applies compactly supported radial basis functions (CS-RBFs) with favorable smoothness and accuracy for interpolation. The expansion coefficients of the interpolation function are treated as the design variables, which reflect the structural performance impacts of the topology, shape, and geometric constraints. Accordingly, the original topological shape optimization problem under geometric constraint is fully transformed into a simple parameter optimization problem; in other words, the optimization contains the expansion coefficients of the interpolation function in terms of limited design variables. This parameterization transforms the difficult shape and topology optimization problems with geometric constraints into a relatively straightforward parameterized problem to which many gradient-based optimization techniques can be applied. More specifically, the extended finite element method (XFEM) is adopted to improve the accuracy of boundary resolution. At last, combined with the optimality criteria method, several numerical examples are presented to demonstrate the applicability and potential of the presented method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号