首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sandwiched morphing skin, composed of cellular based structure and flexible face-sheets, is one of the most promising concepts which can be used for morphing aircraft. Apparently, cellular based structure, with ability to endure aerodynamic pressure and morphing capability, is the most critical component of sandwiched morphing skin. This paper presents a design process for optimal topologies of cellular based structures for two-dimensional morphing skins, and this design procedure is effortless to be adjusted to be applied under different sets of boundary and loading conditions. The topology optimization problem formulation is established based on the simplified isotropic material with penalization (SIMP) interpolation method coupled with the method of moving asymptotes (MMA), meanwhile, Heaviside filter is adopted for reducing the occurrence of transition elements. After several iterations, various optimized topologies of unit cell are calculated corresponding to different morphing applications such as span morphing, sweep morphing and two-dimensional morphing. The mechanical properties of cellular topologies are investigated by comparing with conventional regular honeycomb structure and zero Poisson’s ratio structure via simulation after establishing 3D models of topologies. Results indicate that the design method using topology optimization technique is entirely feasible and optimal topologies of cellular based structure appear to provide superior performance.  相似文献   

2.
Finite topology variations in optimal design of structures   总被引:1,自引:0,他引:1  
The method of optimal design of structures by finite topology modification is presented in the paper. This approach is similar to growth models of biological structures, but in the present case, topology modification is described by the finite variation of a topological parameter. The conditions for introducing topology modification and the method for determining finite values of topological parameters characterizing the modified structure are specified. The present approach is applied to the optimal design of truss, beam, and frame structures. For trusses, the heuristic algorithm of bar exchange is proposed for minimizing the global compliance subject to a material volume constraint and it is extended to volume minimization with stress and buckling constraints. The optimal design problem for beam and frame structures with elastic or rigid supports, aimed at minimizing the structure cost for a specified global compliance, is also considered.  相似文献   

3.
A vibration isolation system is designed using novel hybrid optimization techniques, where locations of machines, locations of isolators and layout of supporting structure are all taken as design variables. Instead of conventional parametric optimization model, the 0-1 programming model is established to optimize the locations of machines and isolators so that the time-consuming remeshing procedure and the complicated sensitivity analysis with respect to position parameters can be circumvented. The 0-1 sequence for position design variables is treated as binary bits so as to reduce the actual number of design variables to a great extent. This way the 0-1 programming can be solved in a quite efficient manner using a special version of genetic algorithm(GA) that has been published by the authors. The layout of supporting structure is optimized using SIMP based topology optimization method, where the fictitious elemental densities are taken as design variables ranging from 0 to 1. Influence of different design variables is firstly investigated by numerical examples. Then a hybrid multilevel optimization method is proposed and implemented to simultaneously take all design variables into account.  相似文献   

4.
A morphing wing concept has been investigated over the last decade because it can effectively enhance aircraft aerodynamic performance over a wider range of flight conditions through structural flexibility. The internal structural layouts and component sizes of a morphing aircraft wing have an impact on aircraft performance i.e. aeroelastic characteristics, mechanical behaviors, and mass. In this paper, a novel design approach is proposed for synthesizing the internal structural layout of a morphing wing. The new internal structures are achieved by using two new design strategies. The first design strategy applies design variables for simultaneous partial topology and sizing optimization while the second design strategy includes nodal positions as design variables. Both strategies are based on a ground structure approach. A multiobjective optimization problem is assigned to optimize the percentage of change in lift effectiveness, buckling factor, and mass of a structure subject to design constraints including divergence and flutter speeds, buckling factors, and stresses. The design problem is solved by using multiobjective population-based incremental learning (MOPBIL). The Pareto optimum results of both strategies lead to different unconventional wing structures which are superior to their conventional counterparts. From the results, the design strategy that uses simultaneous partial topology, sizing, and shape optimization is superior to the others based on a hypervolume indicator. The aeroelastic parameters of the obtained morphing wing subject to external actuating torques are analyzed and it is shown that it is practicable to apply the unconventional wing structures for an aircraft.  相似文献   

5.
The purpose of this paper was to study the layout design of the components and their supporting structures in a finite packing space. A coupled shape and topology optimization (CSTO) technique is proposed. On one hand, by defining the location and orientation of each component as geometric design variables, shape optimization is carried out to find the optimal layout of these components and a finite-circle method (FCM) is used to avoid the overlap between the components. On the other hand, the material configuration of the supporting structures that interconnect components is optimized simultaneously based on topology optimization method. As the FE mesh discretizing the packing space, i.e., design domain, has to be updated itertively to accommodate the layout variation of involved components, topology design variables, i.e., density variables assigned to density points that are distributed regularly in the entire design domain will be introduced in this paper instead of using traditional pseudo-density variables associated with finite elements as in standard topology optimization procedures. These points will thus dominate the pseudo-densities of the surrounding elements. Besides, in the CSTO, the technique of embedded mesh is used to save the computing time of the remeshing procedure, and design sensitivities are calculated w.r.t both geometric variables and density variables. In this paper, several design problems maximizing structural stiffness are considered subject to the material volume constraint. Reasonable designs of components layout and supporting structures are obtained numerically.  相似文献   

6.
Frame structures are extensively used in mechanical, civil, and aerospace engineering. Besides generating reasonable designs of frame structures themselves, frame topology optimization may serve as a tool providing us with conceptual designs of diverse engineering structures. Due to its nonconvexity, however, most of existing approaches to frame topology optimization are local optimization methods based on nonlinear programming with continuous design variables or (meta)heuristics allowing some discrete design variables. Presented in this paper is a new global optimization approach to the frame topology optimization with discrete design variables. It is shown that the compliance minimization problem with predetermined candidate cross-sections can be formulated as a mixed-integer second-order cone programming problem. The global optimal solution is then computed with an existing solver based on a branch-and-cut algorithm. Numerical experiments are performed to examine computational efficiency of the proposed approach.  相似文献   

7.
In previous optimization methods for multi-module satellite equipment (component) layout optimization problem, each component was limited to certain module or supporting surface and could only search its position there. Components could not migrate from one module or supporting surface to another. In this case, the layout design of components within satellite module was seriously hindered from further improvement. In this study a component assignment and layout integration optimization algorithm is presented to deal with this problem, which can assign components to each module of satellite dynamically during optimization procedure. The aim of this paper is to expand the solution space of component layout optimization so as to further improve the component layout design. The proposed component assignment and layout integration optimization algorithm is inspired from the idea of stepwise regression in multiple regression analysis, which allows independent variables to enter or leave regression equation freely. In the proposed algorithm components enter the satellite module one by one in descending order of the product of mass and height. For all supporting surfaces within satellite module, each component will try all of them through layout optimization together with these components have been in the satellite module, and finally select the one with the best fitness as its initial assignment. At the same time, these components have been in the satellite module will be evaluated by their moment of inertia to decide whether they leave the current supporting surfaces and move to another or not. The layout optimization algorithm uses the differential evolution (DE) and random mutation operation to optimize the coordinates and orientations of components, respectively. The performance of the proposed algorithm is finally evaluated on a simplified satellite case. Experimental results show the proposed algorithm outperforms other two algorithms that did not consider component assignment in computational accuracy.  相似文献   

8.
The boom structure is a key component of giant boom cranes, and the stability-ensured topology optimization is critical to its lightweight design. The finite difference method, direct differentiation or adjoint method needs many time-consuming nonlinear analyses for this problem with a large number of design variables and constraints, and the last two methods are difficult to implement in off-the-shelf softwares. To overcome these challenges, this work first defines a global stability index to measure the global stability of the whole structure, and a compression member stability index to identify the buckling of compression members. Numerical and experimental verifications of these two stability indices are conducted by analyzing a simple three-dimensional frame. Next, the anti-buckling mechanism of boom structures is analyzed to develop the precedence order of freezing relative web members. The stability indices and the freezing measure are then utilized as a part of a novel Stability-Ensured Soft Kill Option (SSKO) algorithm, built upon the existing Soft Kill Option (SKO) method. The objective is to minimize the discrepancy between structural volume and predetermined target volume, while the global stability and stress are regarded as constraints. Lastly, the SSKO algorithm with different scenarios is applied to topology optimization problems of four-section frames and a ring crane boom; in both cases the consistent and stable topologies exhibit applicability of the proposed algorithm.  相似文献   

9.
10.
Soft hyperelastic composite structures that integrate soft hyperelastic material and linear elastic hard material can undergo large deformations while isolating high strain in specified locations to avoid failure. This paper presents an effective topology optimization-based methodology for seeking the optimal united layout of hyperelastic composite structures with prescribed boundary displacements and stress constraints. The optimization problem is modeled based on the power-law interpolation scheme for two candidate materials (one is soft hyperelastic material and the other is linear elastic material). The ?-relaxation technique and the enhanced aggregation method are employed to avoid stress singularity and improve the computational efficiency. Then, the topology optimization problem can be readily solved by a gradient-based mathematical programming algorithm using the adjoint variable sensitivity information. Numerical examples are given to show the importance of considering prescribed boundary displacements in the design of hyperelastic composite structures. Moreover, numerical solutions demonstrate the validity of the present model for the optimal topology design with a stress-isolated region.  相似文献   

11.
A topology optimization methodology is presented for the conceptual design of aeroelastic structures accounting for the fluid–structure interaction. The geometrical layout of the internal structure, such as the layout of stiffeners in a wing, is optimized by material topology optimization. The topology of the wet surface, that is, the fluid–structure interface, is not varied. The key components of the proposed methodology are a Sequential Augmented Lagrangian method for solving the resulting large-scale parameter optimization problem, a staggered procedure for computing the steady-state solution of the underlying nonlinear aeroelastic analysis problem, and an analytical adjoint method for evaluating the coupled aeroelastic sensitivities. The fluid–structure interaction problem is modeled by a three-field formulation that couples the structural displacements, the flow field, and the motion of the fluid mesh. The structural response is simulated by a three-dimensional finite element method, and the aerodynamic loads are predicted by a three-dimensional finite volume discretization of a nonlinear Euler flow. The proposed methodology is illustrated by the conceptual design of wing structures. The optimization results show the significant influence of the design dependency of the loads on the optimal layout of flexible structures when compared with results that assume a constant aerodynamic load.  相似文献   

12.
Topology optimization of frame structures with flexible joints   总被引:1,自引:0,他引:1  
A method for structural topology optimization of frame structures with flexible joints is presented. A typical frame structure is a set of beams and joints assembled to carry an applied load. The problem considered in this paper is to find the stiffest frame for a given mass. By introducing design variables for beams and joints, a mass distribution for optimal structural stiffness can be found. Each beam can have several design variables connected to its cross section. One of these is an area-type design variable which is used to represent the global size of the beam. The other design variables are of length ratio type, controlling the cross section of the beam. Joints are flexible elements connecting the beams in the structure. Each joint has stiffness properties and a mass. A framework for modelling these stiffnesses is presented and design variables for joints are introduced. We prove a theorem which can be interpreted as the fact that the removal of structural elements, e.g. joints or beams, can be modelled by a small strictly positive material amount assigned to the element. This is needed for the computations of sensitivities used in the applied gradient based iterative method. Both two and three dimensional problems, as well as multiple load cases and multiple mass constraints, are treated.  相似文献   

13.
This paper focuses on discrete sizing optimization of frame structures using commercial profile catalogs. The optimization problem is formulated as a mixed-integer linear programming (MILP) problem by including the equations of structural analysis as constraints. The internal forces of the members are taken as continuous state variables. Binary variables are used for choosing the member profiles from a catalog. Both the displacement and stress constraints are formulated such that for each member limit values can be imposed at predefined locations along the member. A valuable feature of the formulation, lacking in most contemporary approaches, is that global optimality of the solution is guaranteed by solving the MILP using branch-and-bound techniques. The method is applied to three design problems: a portal frame, a two-story frame with three load cases and a multiple-bay multiple-story frame. Performance profiles are determined to compare the MILP reformulation method with a genetic algorithm.  相似文献   

14.
It is shown that the optimization of truss and frame structures where layout geometry variables are included as design variables is inherently poorly scaled and that a two-step procedure can be used to overcome this problem. Using a standard optimization package this procedure is used to find the optimal geometry and sizing of a two-dimensional and a three-dimensional frame structure.  相似文献   

15.
This paper deals with joint penalization and material selection in frame topology optimization. The models used in this study are frame structures with flexible joints. The problem considered is to find the frame design which fulfills a stiffness requirement at the lowest structural weight. To support topological change of joints, each joint is modelled as a set of subelements. A set of design variables are applied to each beam and joint subelement. Two kinds of design variables are used. One of these variables is an area-type design variable used to control the global element size and support a topology change. The other variables are length ratio variables controlling the cross section of beams and internal stiffness properties of the joints. This paper presents two extensions to classical frame topology optimization. Firstly, penalization of structural joints is presented. This introduces the possibility of finding a topology with less complexity in terms of the number of beam connections. Secondly, a material interpolation scheme is introduced to support mixed material design.  相似文献   

16.
为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择,而是通过PNAS算法来设计最优拓扑结构以最大化F1分数;其次,使用基于序列模型的优化(SMBO)策略,在该策略中将按照复杂度从低到高的顺序搜索结构空间,同时学习一个代理函数以引导对结构空间的搜索;最后,将搜索过程中表现最好的20个模型在OPPORTUNIT数据集上进行完全训练,并从中选出表现最好的模型作为搜索到的最优架构。通过这种方式搜索到的最优架构在OPPORTUNITY数据集上的F1分数达到了93.08%,与进化算法搜索到的最优架构及DeepConvLSTM相比分别提升了1.34%和1.73%,证明该方法能够改进以前手工设计的模型结构,且是可行有效的。  相似文献   

17.
Computing smooth and optimal one-to-one maps between surfaces of same topology is a fundamental problem in computer graphics and such a method provides us a ubiquitous tool for geometric modeling and data visualization. Its vast variety of applications includes shape registration/matching, shape blending, material/data transfer, data fusion, information reuse, etc. The mapping quality is typically measured in terms of angular distortions among different shapes. This paper proposes and develops a novel quasi-conformal surface mapping framework to globally minimize the stretching energy inevitably introduced between two different shapes. The existing state-of-the-art inter-surface mapping techniques only afford local optimization either on surface patches via boundary cutting or on the simplified base domain, lacking rigorous mathematical foundation and analysis. We design and articulate an automatic variational algorithm that can reach the global distortion minimum for surface mapping between shapes of arbitrary topology, and our algorithm is sorely founded upon the intrinsic geometry structure of surfaces. To our best knowledge, this is the first attempt towards numerically computing globally optimal maps. Consequently, our mapping framework offers a powerful computational tool for graphics and visualization tasks such as data and texture transfer, shape morphing, and shape matching.  相似文献   

18.
董文  苏鸿根 《计算机工程》2004,30(16):163-165
介绍了三维Morphing,编程实现了相同顶点数和拓扑结构的物体之间的Morphing,并采用一种带不失真纹理映射的船形曲面造型法,有效地消除了形变曲面的纹理映射的图像失真问题,最后给出了基于任意拓扑结构的物体间Morphing的方法。  相似文献   

19.
We consider the minimum compliance topology design problem with a volume constraint and discrete design variables. In particular, our interest is to provide global optimal designs to a challenging benchmark example proposed by Zhou and Rozvany. Global optimality is achieved by an implementation of a local branching method in which the subproblems are solved by a special purpose nonlinear branch-and-cut algorithm. The convergence rate of the branch-and-cut method is improved by strengthening the problem formulation with valid linear inequalities and variable fixing techniques. With the proposed algorithms, we find global optimal designs for several values on the available volume. These designs can be used to validate other methods and heuristics for the considered class of problems.  相似文献   

20.
This paper discusses a new structural optimization method, based on topology optimization techniques, using frame elements where the cross-sectional properties can be treated as design variables. For each of the frame elements, the rotational angle denoting the principal direction of the second moment of inertia is included as a design variable, and a procedure to obtain the optimal angle is derived from Karush–Kuhn–Tucker (KKT) conditions and a complementary strain energy-based approach. Based on the above, the optimal rotational angle of each frame element is obtained as a function of the balance of the internal moments. The above methodologies are applied to problems of minimizing the mean compliance and maximizing the eigen frequencies. Several examples are provided to show the utility of the presented methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号