首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过动电位极化以及恒电位极化试验,采用失重法、阳极Tafel直线段反推法等技术手段,针对温度对最小阴极保护电位的影响,探究了不同温度条件下模拟土壤溶液中埋地管道L450的最小阴极保护电位,以期阴极保护系统达到最佳的保护状态,避免因阴极保护不足而造成管道腐蚀穿孔的现象,从而科学有效地提升管道腐蚀防护的适用性和正确性.结果 表明:对于运行温度≤40℃的管线,最小阴极保护电位应为Ep≤-850 mV(vs CSE,下同);对于运行温度40~60℃的管线,最小阴极保护电位应为-850 mV≤Ep≤-950 mV;对于运行温度60~ 80℃的管线,最小阴极保护电位应为-950 mV≤Ep≤-1000 mY;对于运行温度>80℃的管线,Ep≤-1000mV.  相似文献   

2.
目前,埋地管道阴极保护常用-850 mV和-100 mV两大电位准则,如果阴极保护电位设置不当、测试不准会影响保护效果。结合理论与实践比较了两大电位准则的适用性;总结了常用的阴极保护电位测量方法及其适用的场合。结果表明:自腐蚀电位较正(-400 mV)时,2种准则都能有效降低保护对象的腐蚀;自腐蚀电位较负(-800 mV)时,-100 mV极化值下的保护效果更优;对城市在旧管网追加阴极保护时,可采用地表参比法监测管道防腐蚀层状况,采用断电法及-100 mV准则判断阴极保护效果。  相似文献   

3.
为研究阴阳极交替极化对Q235碳钢腐蚀的影响,通过方波阴阳极交替极化进行了4种状态下(±50 mV、±100 mV、±150 mV、±200 mV)的腐蚀行为研究,获得了腐蚀失重和电化学测试结果.结果 表明,阴阳极交替极化会加速Q235钢在海水中的腐蚀,且阴阳极交替极化的幅度越大其加速作用越强.对Q235钢施加阴阳极交替极化不同次数后,+50 mV、+100 mV和+150 mV阳极极化时,电流密度呈现"瞬间升高-迅速降低-500 s后稳定"的变化过程;而施加+200 mV阳极极化时,电流密度呈现"瞬间升高-迅速降低-持续升高"的变化过程.交流阻抗结果显示,Q235钢在经历阴阳极交替极化后的电荷转移电阻Rct值小于全浸条件,且交替极化的幅度越大Rct值越小.极化曲线结果显示,当阴阳极交替极化幅度超过±100 mV后,Q235钢腐蚀的阴极过程显著加快.  相似文献   

4.
为了提高Q235碳钢的防腐蚀性能,先对其进行钝化处理,然后分别在不含和含有钼酸的苯胺和草酸混合溶液中,采用循环伏安法在碳钢电极表面电化学合成聚苯胺(PANI)和聚苯胺/钼酸(PANI-MoO2-4)涂层;利用开路电位-时间曲线、动电位极化曲线及电化学阻抗谱分析了PANI涂层和PANI-MoO2-4涂层在3.5%NaCl溶液中的防腐蚀性能。结果表明:PANI-MoO2-4涂层对Q235碳钢的腐蚀防护作用明显优于PANI涂层;与碳钢相比,PANI-MoO2-4涂层的自腐蚀电位升高了近188 mV,自腐蚀电流密度约为碳钢的1/5,低频阻抗模值|Z|0.05 Hz约为碳钢的53倍。  相似文献   

5.
阴极保护数值模拟计算以实测极化曲线作为边界条件时,极化曲线能否正确反映金属表面的实际极化状态影响着数值模拟的准确性。对Q235碳钢新鲜和阴极保护5 d后的表面在自然海水中的交流阻抗进行了分析,确定了最大扫描速率,获得了更接近实际极化情况的曲线,得到了更理想的数值模拟结果。结果表明:测量极化曲线时能准确反映电极表面状态的最大扫描速率与极化电流相对误差、电压扫描范围成正比,与反应电阻和电容成反比;极化电阻和电容增大时,测量极化曲线的扫描速率相应成比例降低;最大反应阻抗时的电位为电极的最佳保护电位,该保护电位随保护表面的变化而变化,Q235碳钢表面沉积钙镁盐后,最佳保护电位正移。  相似文献   

6.
用动电位极化曲线和电化学阻抗谱的方法对触变成形AZ91D镁合金在NaCl水溶液中腐蚀行为进行了研究.结果表明:在相同浓度的NaCl水溶液中,随着腐蚀时间的延长,开路电位逐渐提高(正移),同一腐蚀电位下触变成形AZ91 D镁合金的阳极极化电流明显减小,电化学阻抗谱(EIS)显示其容抗减小,腐蚀产物在合金表面沉积,对基体金属具有一定的保护作用,因而其腐蚀速度减小;随着溶液中Cl-浓度的增大,开路电位呈下降(负移)趋势,且其开路电位的正移速度较慢,同一腐蚀电位下触变成形AZ91D镁合金的阳极极化电流增大,EIS显示其线性阻抗减小,腐蚀反应的过程加快,所以腐蚀速度增大.  相似文献   

7.
采用四点法测试计算了碳钢在H2SO4及加入缓蚀剂的介质中的腐蚀速率,结果表明:该测试方法的最佳极化范围为-50~-10mV和10~50mV;在此范围内应用四点法能够快速简便地测定碳钢的腐蚀速率并评选缓蚀剂。结果与Tafel直线外推法一致。  相似文献   

8.
赵卫民  王勇  薛锦  吴开源 《材料保护》2005,38(4):21-24,31
在碳钢表面制备NiCrBSi耐蚀合金堆焊层,采用腐蚀浸泡试验和交流阻抗法研究了镍基合金层在3.5%NaCl溶液中的腐蚀失效过程.镍基堆焊层具有良好的耐蚀性能,交流阻抗测试过程中利用恒电位极化进行加速腐蚀.结果发现,夹杂物的存在是堆焊层发生局部腐蚀的根本原因,减少夹杂物的数目和减小夹杂物的体积可以有效提高堆焊层的耐蚀性能.堆焊层耐蚀性能稳定,阻抗随腐蚀的进行略有下降,腐蚀体系的等效电路为典型的Randles等效电路.如果堆焊层某些局部区域腐蚀严重,表面有基底露出点,则堆焊层阻抗显著减小,体系的等效电路发生变化,堆焊层与基底间即使没有发生宏观的电偶腐蚀也会失效.自然腐蚀电位测试结果证明,可以通过监测结构件电极电位的变化来判断堆焊层的腐蚀失效情况.  相似文献   

9.
紫铜在海洋微生物作用下的电化学腐蚀行为   总被引:1,自引:0,他引:1  
采用开路电位、电化学极化曲线、电化学阻抗谱(EIS)研究了紫铜在海水盐度和微生物影响下的腐蚀行为。结果表明,无菌介质条件下,随着介质盐度的增加,紫铜的开路电位负移,使得腐蚀倾向与腐蚀率变大。扫描电子显微镜(SEM)形貌分析表明在紫铜上附着的海洋微生物以杆状细菌为主,咸淡水中的细菌附着量比海水的大,导致紫铜在盐度不高的咸淡水耐蚀性能下降。EIS结果表明在海洋微生物作用下紫铜的交流阻抗模值减少,降低了紫铜的极化电阻和表面膜的电阻,从而加速了紫铜的腐蚀进程。  相似文献   

10.
使用电化学交流阻抗技术,研究了碳钢在硫酸盐还原细菌和铁还原细菌混合微生物培养基介质中的腐蚀行为。结果表明,混合微生物膜能够抑制碳钢的腐蚀,而硫酸盐还原细菌加速腐蚀。铁还原细菌作用下的铁磷酸盐化合物和绿锈生成可能是抑制腐蚀的主要因素。  相似文献   

11.
The systematic laboratory studies on the roles of sulfate-reducing bacteria(SRB) in the stress corrosion cracking(SCC) susceptibility of X80 steel subjected to cathodic potential have been conducted in a nearneutral pH soil solution by slow strain rate tests.The cathodic potential and SRB increase individually the SCC susceptibility of the steel in the soil solution.The positive role of the SRB activities in SCC susceptibility depends on the prolongation of pre-incubation time,and the SCC susceptibility of the steel increases under more negative potentials.What’s more,the applied potentials and the presence of SRB work together in promoting the SCC susceptibility of the steel.But,the combined action becomes limited with decreasing cathodic potentials.The relationships between the plasticity loss and the permeable hydrogen concentration were established for the steel in the soil solution,regardless of under open circuit potential or cathodic potentials,in both the sterile and SRB inoculated conditions.The relationships are practically significant for the selection of safe cathodic protection(CP) potentials in the presence of SRB in soil environment.  相似文献   

12.
脱氮硫杆菌对碳钢微生物腐蚀的影响   总被引:5,自引:0,他引:5  
将实验室分离纯化所得的脱氮硫杆菌(简称T.denitrificans)用于硫酸盐还原菌(简称SRB)引起的微生物腐蚀的防治。采用静态挂片、交流阻抗法(EIS)等方法,研究了Q235钢在接种SRB以及SRB和T.denitrificans共存培养基介质中的腐蚀行为;并借助扫描隧道显微镜、电子探针等表面分析手段,研究了碳钢腐蚀过程中生物膜的形貌及致密程度的变化以及生物膜中细菌的新陈代谢产物。研究结果表明:SRB的存在加速了Q235钢的腐蚀,若该体系中有T.denitrificans共存,可明显降低碳钢微生物腐蚀的程度,且共生生物膜较SRB单独存在时的生物膜更为致密,该生物膜中硫化物含量远比SRB生物膜中的含量低。  相似文献   

13.
通过测定海水溶液中硫酸盐还原菌(SRB)生长曲线、溶液状态参数、自腐蚀电位、电化学阻抗谱和极化曲线的变化规律,研究了SRB的存在对X100钢在该体系中的腐蚀行为的影响。结果表明:SRB在海水培养基中的一个生长周期可分为快速生长阶段、稳定阶段和衰亡阶段。溶液S2-浓度和氧化还原电位与SRB数目密切相关,X100钢的自腐蚀电位随时间增加呈现先负移、然后正移、最后负移的变化规律;EIS结果表明,在接菌海水中,X100钢的腐蚀速率随着浸泡时间的增加呈现先增大、后减小、再增大的变化趋势;与灭菌海水中的腐蚀相比,X100钢在接菌海水中的腐蚀电流密度降低,腐蚀减弱,其原因是SRB生物膜的存在阻碍了海水与试样表面的直接接触,从而抑制了金属的腐蚀。  相似文献   

14.
海洋硫酸盐还原菌对Q235钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
采用失重法、开路电位、电化学阻抗谱(EIS)、极化曲线等方法,通过在海洋环境中浸泡不同时间对比分析有无硫酸盐还原菌(SRB)条件下Q235钢的腐蚀电化学特征,研究SRB对Q235钢的腐蚀行为的影响。结果表明,在含SRB的海水中,随着浸泡时间延长,Q235钢的腐蚀电流密度先从7.49mA·cm~(-2)增加至9.77mA·cm~(-2),然后逐渐减小至5.01mA·cm~(-2),最终增加至12.6mA·cm~(-2),且始终小于相同时间下无SRB海水中的腐蚀电流密度,表明SRB的存在抑制了Q235的腐蚀。在含SRB的海水中,Q235钢的腐蚀行为主要由Cl~-和生物膜共同影响。在SRB稳定生长阶段,腐蚀以生物膜抑制为主;在SRB指数生长阶段和衰亡阶段,生物膜抑制作用较弱,以Cl~-促进金属腐蚀为主。  相似文献   

15.
Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM) combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.  相似文献   

16.
以304不锈钢(06Cr19Ni10)作为阴极构建海底生物燃料电池装置,研究了该电池对其海水腐蚀的阴极保护作用。自然腐蚀状态下不锈钢电位为-260 mV,阴极保护试样为-340 mV。荧光显微镜(FM)和扫描电镜(SEM)观察结果表明,两组试样的表面微生物附着情况差别不大,阴极保护试样表面腐蚀程度较低。电化学阻抗法及极化曲线测试表明,通电保护试样的阻抗值随时间增加逐渐增大,腐蚀电流密度Icorr逐渐减小,保护试样的抗腐蚀能力增强,电池装置对不锈钢阴极起到一定的保护作用。  相似文献   

17.
硫酸盐还原菌的生长过程及其对D36钢海水腐蚀行为的影响   总被引:3,自引:0,他引:3  
通过测定海水中硫酸盐还原菌(SRB)的生长曲线及其不同生长阶段的硫离子浓度、D36钢电极体系的氧化还原电位、自腐蚀电位、极化曲线和电化学阻抗谱,研究了硫酸盐还原菌对该体系钢电极腐蚀行为的影响。结果表明,海水中D36钢氧化还原电位和自腐蚀电位主要由体系中硫酸盐还原菌代谢产物硫离子的浓度所决定;体系的阳极和阴极反应速率均在硫酸盐还原菌增殖期增加,而且阳极反应速率衰亡期和残余期保持不变。  相似文献   

18.
The corrosion damage of 20 SiMn steel by sulphate-reducing bacteria(SRB)and the mitigation effect of organic silicon quaternary ammonium salt(OSA)were studied in sterilized mild alkaline simulated concrete pore solution(STR)with different additions of SRB and OSA at pH 9.35 for 28 days.Uniform corrosion occurs in STR medium while slight localized corrosion is observed in STR+OSA medium,and localized pitting corrosion occurs in STR+SRB and STR+SRB+OSA media.The largest pit depth reduces from 36.70μm in STR+SRB medium to 3.31μm in STR+SRB+OSA medium due to the mitigation effect of OSA.The corrosion rate reflected by weight loss and electrochemical impedance spectroscopy(EIS)results presents the order of STR相似文献   

19.
为了进一步明确X100管线钢在含硫酸盐还原菌(SRB)海滨盐碱土壤中的耐蚀性,采用表面分析技术、电化学技术和失重法,研究了SRB对X100管线钢腐蚀过程与行为的影响。结果表明:X100管线钢在有无SRB海滨盐碱土壤中的腐蚀均属于中度腐蚀,无SRB时腐蚀产物主要为Fe_2O_3,Fe_3O_4和γ-Fe O(OH),有SRB时腐蚀产物主要为Fe_2O_3,Fe_3O_4,α-Fe O(OH)和Fe7S8;SRB代谢形成的活性生物膜影响了X100管线钢的腐蚀行为,随着腐蚀时间的增加,SRB可在X100管线钢表面形成由微生物膜与腐蚀产物结合的膜,其更加致密,对腐蚀传质具有物理阻碍作用,可以减缓X100管线钢的腐蚀;无SRB菌时X100管线钢表面的腐蚀产物疏松多孔并分布有裂纹,且对基体的保护作用差,其腐蚀速率大于有SRB时的值;SRB的代谢活动抑制了X100管线钢的腐蚀。  相似文献   

20.
利用高速电弧喷涂技术在Q235钢基体上制备Zn-Al-Mg-RE涂层,采用环氧改性有机硅树脂对涂层进行封孔,在含硫酸盐还原菌(SRB)海水中浸泡后,采用EIS,PC等方法研究Zn-Al-Mg-RE涂层在SRB一个生长周期内的腐蚀行为,并对涂层进行表面微观形貌和化学成分分析,探讨其腐蚀机理。结果表明:封孔和未封孔的Zn-Al-Mg-RE涂层在含SRB海水中的腐蚀速率均呈先增大后减小的趋势;封孔后Zn-Al-Mg-RE涂层的耐腐蚀性得到较大提高。经过浸泡后的Zn-Al-Mg-RE涂层表面覆盖了一层微生物和腐蚀产物组成的混合物层和钝化膜层,避免了涂层进一步遭受损坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号