首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The iron nitrate and suitable salt of nickel, cobalt, or magnesium with molar ratio of 2:1 were introduced into the pores of mesoporous silica SBA-15 via two-solvent method. The thermal decomposition of the precursors and the formation of one-dimensional nanostructured spinel ferrite in SBA-15 pores were monitored by XRD, TG-DTA, N2 adsorption-desorption, and TEM. The pure spinel MFe2O4 nanowires obtained through complete removal of the silica template with aqueous NaOH solution were confirmed by TEM and HRTEM. The spinel MFe2O4 nanowires showed increasing normal configuration and exhibited superparamagnetism in comparison with the bulk ones.  相似文献   

2.
MgxCu3−xV2O6(OH)4·2H2O (x ∼ 1), with similar crystal structure as volborthite Cu3V2O7(OH)2·2H2O, was successfully prepared by a soft chemistry technique. The method consists of mixing magnesium nitrate and copper nitrate with a boiling solution of vanadium oxide (obtained by reacting V2O5 with few mL of 30 vol.% H2O2 followed by addition of distilled water). When ammonium hydroxide NH4OH 10% was added (pH 7.8), a green yellowish precipitate was obtained. Using X-ray powder diffraction data, its crystal structure has been determined by Rietveld refinement. Compared to volborthite, the vanadium coordination changes from tetrahedral VO4 to trigonal bipyramidal VO5, and magnesium replaces copper, preferably, in the less distorted octahedron. At 300 °C, the phase formed is similar to the high pressure (HP) monoclinic Cu3V2O8 phase. However at higher temperature, 600 °C, the phase obtained is different from known Cu3V2O8 phases.  相似文献   

3.
Perovskite-type oxides, BaMoO3 and SrMoO3, were prepared by reduction of scheelite-type oxides, BaMoO4 and SrMoO4, in H2 flow at 873 K and characterized by XRD, TG, SEM, TPR, NH3-TPD, UV-vis DRS and BET measurement. The catalytic activity of these alkaline-earth molybdenum oxide catalysts was tested for oxidation of 2-propanol with gaseous oxygen under atmospheric pressure. Dehydration to propylene was mainly promoted over the scheelite-type with Mo6+, while oxidative dehydrogenation to acetone was mainly promoted over the perovskite-type with Mo4+, and selectivity to acetone was much higher over BaMoO3 than over SrMoO3. Both perovskite-type oxide catalysts underwent oxidation to some degree during the catalytic reaction, so that they also contained some Mo6+. We concluded that the high selectivity to acetone resulting from oxidative dehydrogenation during 2-propanol conversion is related to the constantly changing oxidation state of the catalyst, resulting in coexistence of Mo6+ octahedra and Mo4+ octahedra on the AMoO3 oxides.  相似文献   

4.
New phosphors M2(Mg, Zn)Si2O7:Mn2+ (M = Ca, Sr, Ba) were prepared by sol-gel process, and their luminescent properties in ultraviolet and vacuum ultraviolet region were investigated. The results showed that the (Ca, Sr, Ba)2MgSi2O7:Mn2+ samples did not emit any visible light; the Sr2ZnSi2O7:Mn2+ and Ca2ZnSi2O7:Mn2+ samples showed green light. The Ba2ZnSi2O7:Mn2+ sample mainly showed green light under 254 nm excitation and red light under 147 nm excitation. The different emission was due to the Mn2+ ions occupied different sites, which were excited selectively. Among the three phosphors Sr2ZnSi2O7:Mn2+ showed the highest green emission intensity, and its decay time was shorter than that of Zn2SiO4:Mn2+ under 147 nm excitation.  相似文献   

5.
Microstructures of Nd2(CO3)3·8H2O with various morphological structures and sizes were successfully synthesized using the microemulsion-assisted solvothermal method. The obtained products were characterized by X-ray diffraction (XRD), differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron diffraction (ED). The results showed that pyramid-like and spherical Nd2(CO3)3·8H2O microstructures were synthesized depending on the reaction time and reaction temperature. Moreover, the reaction time and temperature also played important roles in controlling the morphologies and sizes of the resulting Nd2(CO3)3·8H2O microstructures.  相似文献   

6.
The complex perovskite oxide barium iron tantalate (BFT), BaFe1/2Ta1/2O3, strontium iron tantalate (SFT), SrFe1/2Ta1/2O3 and calcium iron tantalate (CFT), CaFe1/2Ta1/2O3 are synthesized by a solid-state reaction technique. Rietveld refinement of the X-ray diffraction data of the samples shows that BFT and SFT crystallize in cubic structure, with lattice parameter a = 4.06 Å for BFT and 3.959 Å for SFT, whereas CFT crystallizes in orthorhombic structure having lattice parameters a = 5.443 Å, b = 5.542 Å and c = 7.757 Å. Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm−1 and 620 cm−1. The compounds show significant frequency dispersion in its dielectric properties. The complex impedance plane plots of the samples show that the relaxation (conduction) mechanism in these materials is purely a bulk effect arising from the semiconductive grains. The relaxation mechanism of the samples is modelled by Cole-Cole equation. The frequency dependent conductivity spectra are found to follow the power law.  相似文献   

7.
Photocatalysts nano A2TinO2n+1 (A = Li, Na, K) were prepared successfully by novel hydrothermal synthesis process. Powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) absorption spectra and field-emission scanning electron microscope (FE-SEM) measurements. These results showed that the compositions of lithium, sodium and potassium titanates were Li2TiO3, Na2Ti3O7 and K2Ti8O17, respectively. The nano crystals of Li2TiO3 were self-assembled as snowflakes while that of Na2Ti3O7 and K2Ti8O17 were nanorods. Photocatalytic properties of alkali titanates were also investigated. The results indicated that alkali titanates as prepared have higher photocatalytic activities compared with P25 TiO2 in the degradation of chloroform under UV light irradiation. A combination of K2Ti8O17 and NiO produces a photocatalyst effective for the degradation of chloroform in aqueous solution. The framework of the tunnel structure was suitable for accommodating cocatalysts such as NiO to induce a strong interaction between the active species and cocatalysts. Na2Ti3O7 has high photocatalytic activity under visible-light irradiation due to its strong absorption in the visible light region. The photocatalytic properties of Li2TiO3 are inferior to that of Na2Ti3O7 and K2Ti8O17 due to its mono-perovskite structure.  相似文献   

8.
We describe transformations of the Dion-Jacobson (D-J) phases, KLaNb2O7 and RbBiNb2O7, to the Aurivillius (A) phases, (PbBiO2)LaNb2O7 (1) and (PbBiO2)BiNb2O7 (2), in a metathesis reaction with PbBiO2Cl. Oxide 1 adopts centrosymmetric tetragonal structure (a = 3.905(1) Å, c = 25.66(1) Å), whereas oxide 2 crystallizes in a noncentrosymmetric orthorhombic (A21am) (a = 5.489(1) Å, b = 5.496(2) Å, c = 25.53(1) Å) structure. Oxide 2 shows a distinct SHG response towards 1064 nm laser radiation. The role of La3+ versus Bi3+ in the perovskite slabs for the occurrence of noncentrosymmetric structure/ferroic property in these materials is pointed out.  相似文献   

9.
This paper presents the results of a study concerning the structural and electrical properties of MgAl2-2xZrxMxO4 (x = 0.00-0.20 and M = Co2+ and Ni2+) prepared by a coprecipitation technique using urea as a precipitating agent. The X-ray diffraction data for the pure and its doped samples are consistent with the single-phase spinel and their crystallite sizes are in the range 7-20 ± 4 nm. The DC resistivity increases from 3.09 × 109 Ω cm to 6.73 × 109 and 8.06 × 109 Ω cm whereas dielectric constant decreases from 5.80 to 5.11 and 4.95 on doping with Zr-Co and Zr-Ni, respectively. The electrical resistivity variations with increase in the dopant contents indicate two types of conduction mechanisms in operation. Several parameters such as, hopping energy (W), metal-semiconductor transition temperature (TMS) and Debye temperature (θD) have also been determined. The increase in DC resistivity and decrease in dielectric constant suggest that the synthesized materials can be considered for application as an insulating and structural material in fusion reactors.  相似文献   

10.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

11.
Cu3V2O7(OH)2·2H2O nanowires have been synthesized in high yield through a simple and facile low-temperature hydrothermal approach without any template or surfactants. XRD, TG, FE-SEM, TEM and HRTEM were used to characterize the product. The results indicated that the product consisted of wirelike crystals about 80 nm in diameter and length up to several micrometers. The formation of wirelike structure of Cu3V2O7(OH)2·2H2O depended crucially on the reaction time and pH value of the precursor suspensions. The optical absorption spectrum indicates that the Cu3V2O7(OH)2·2H2O nanowires have a direct band gap of 1.94 eV.  相似文献   

12.
Na0.10(VO)0.45LaTiO4·nH2O (n ≅ 0.6) has been synthesized by an ion exchange reaction between the single-layered perovskite, NaLaTiO4, and aqueous VOSO4. This low temperature phase retains the structure of the parent with a slight contraction of its tetragonal unit cell. Rietveld refinement of X-ray powder diffraction data indicate that the vanadyl units are disordered within the perovskite layers. Infrared spectroscopy, electron spin resonance and magnetic susceptibility are consistent with the presence of isolated vanadyl units. Susceptibility data show Curie-Weiss behavior above 140 K.  相似文献   

13.
The chemical preparation and crystal structure are given for a new organic-cation cyclotetraphosphate. This compound is triclinic P-1 with the following unit cell parameters: a=7.857(1) Å, b=8.877(2) Å, c=17.271(3) Å, α=93.94(1)°, β=101.75(2)°, γ=103.72(1)° V=1137.0(4) Å3, Z=1 and ρcal=1.467 g cm−3. The crystal structure has been determined and refined to R=0.037, using 6291 independent reflections. The atomic arrangement can be described by inorganic layers parallel to the (0 0 1) planes, between which the organic entities are located.  相似文献   

14.
A new solid high-proton conductor decatungstomolybdovanadogermanic heteropoly acid (HPA) H5GeW10MoVO40·21H2O has been synthesized for the first time by stepwise acidification and stepwise addition of solutions of the component elements. The product was characterized by chemical analysis, potentiometric titration, IR, UV, XRD and TG-DTA. The IR, UV and XRD indicate that H5GeW10MoVO40·21H2O possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the acid, the amount of the loss, as well as the thermostability. The results of AC impedance measurement show that its proton conductivity is 3.58 × 10−4 S cm−1 at 18 °C and the activation energy for proton conduction is 31.82 kJ/mol.  相似文献   

15.
A series of 0.4Li2MnO3·0.6LiMO2 (M = Ni1/3Co1/3Mn1/3 and Ni1/3Cr1/3Mn1/3) cathode materials are prepared by a co-precipitation method with subsequent quenching. Crystal structures of samples are investigated by X-ray diffraction and electron diffraction, which show a co-existence of rhombohedral and monoclinic structures indicating nanocomposite characteristics of the sample of 0.4Li2MnO3·0.6Li Ni1/3Cr1/3Mn1/3O2. The average particle size distributions of the powders are analyzed to be an order 400 and 100 nm. The 0.4Li2MnO3·0.6LiMO2 (M = Ni1/3Co1/3Mn1/3 and Ni1/3Cr1/3Mn1/3) electrodes, which consist of a well balanced partial phases of rhombohedral and monoclinic can deliver a high reversible capacity of 220-230 mAh/g during an extended cycling.  相似文献   

16.
A series of lanthanum perovskites, LaMO3 (M = Al, Cr, Mn, Fe, Co), having important technological applications, have been successfully prepared by a very fast, inexpensive, reproducible, environment-friendly method: the microwave irradiation of the corresponding mixtures of nitrates. Worth to note, the microwave source is a domestic microwave oven. In some cases the reaction takes place in a single step, while sometimes further annealings are necessary. For doped materials the method has to be combined with others such as sol-gel. Usually, nanopowders are produced which yield high density pellets after sintering. Rietveld analysis, oxygen stoichiometry, microstructure and magnetic measurements are presented.  相似文献   

17.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

18.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

19.
A new iron oxophosphate of composition Rb7Fe7(PO4)8O2·2H2O has been synthesized and studied by X-ray diffraction, TG and DTA analysis, magnetic susceptibility, neutron diffraction, Mössbauer spectroscopy and ionic conductivity. This compound crystallizes in the monoclinic system with the P21/c space group and the unit cell parameters a = 8.224(8) Å, b = 22.162(6) Å, c = 9.962(6) Å and β = 109.41(8)°. Its structure is built up from Fe7O32 clusters of edge- and corner-sharing FeO5 and FeO6 polyhedra. Neighboring clusters are connected by the phosphate tetrahedra to form a three-dimensional framework. The Rb+ cations and the water molecules are occupying intersecting tunnels parallel to a and c. The presence of water molecules was confirmed by TG and DTA analysis. The magnetic susceptibility measurements have shown the existence of antiferromagnetic ordering below 22 K with a weak ferromagnetic component. Additionally, these measurements show evidence for a strong magnetic frustration characterized by |θ/TN| ≈ 12. Powder neutron diffraction study confirms the presence of a long range antiferromagnetic order coupled to a weak ferromagnetic component along the b-axis. The strongly reduced magnetic moments extracted from the refinement support the existence of a magnetically frustrated ground state. The Mössbauer spectroscopy results confirmed the presence of only Fe3+ ions in both five and six coordination. The ionic conductivity measurements led to activation energy of 0.81 eV, a value that agrees with the obtained for other rubidium phosphates.  相似文献   

20.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号