首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

2.
A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN)2-PHAL) and K2Os(OH)4·2H2O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transform Infrared spectroscopy, N2 adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO4-(QN)2PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.  相似文献   

3.
Powder iron phosphide (FeP) has been prepared via a benzene-thermal synthesis with the reaction of anhydrous iron chloride (FeCl3) and sodium phosphide (Na3P) at 180-190°C. The product was analyzed by X-ray photoelectron spectroscopy (XPS), and the results show the mole ratio of Fe:P is 1.12. X-ray diffraction (XRD) pattern can be indexed to the orthorhombic cell of FeP with the lattice constant a=5.191, b=3.101, and c=5.789 Å. Transmission electron microscope (TEM) images indicate that average particle size is about 200 nm in diameter.  相似文献   

4.
The silver sulfide (Ag2S) nanoparticles were prepared by the reaction of AgNO3 and Na2S in the lamellar liquid crystal (LLC) formed by Triton X-100, n-C10H21OH and H2O. The size of the particles is about 2-3 nm. The existence of Ag2S nanoparticles can improve the lubrication of the lamellar liquid crystal.  相似文献   

5.
The microspherical LiMnPO4 cathode material was successfully prepared for the first time by a simple one-step solvothermal process in the presence of critic acid. The reaction conditions (reactant concentration, reaction temperature) were used further to fabricate the size, surface coarseness and morphology of the microspherical LiMnPO4. The as-prepared microspherical LiMnPO4 at variant conditions exhibited remarkably different discharge capacity and rate capacity, indicating the potential of the suggested method in tuning the morphology and the structure of LiMnPO4 to improve its electrochemical performance.  相似文献   

6.
《Materials Research Bulletin》2013,48(11):4797-4803
Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.  相似文献   

7.
Bimodal mesoporous materials were modified with different amount of 3-aminopropyltriethoxysilane and employed as aspirin carriers. The modified and drug loaded bimodal mesoporous materials were characterized with XRD, FT-IR, TEM and elemental analysis methods to explore the influence of amino groups and drug molecules on the mesoporous surface. Meanwhile, the mesoporous surface energy states was calculated by the density functional theory based on the N2 sorption analysis. According to the surface energy distributions of samples including before and after modification and drug loading, it can be deduced that through superficial modification with amino groups, the surface energy moves to high state, implying the introduction of amino moieties could provide the mesoporous surface with much active sites. Besides, the interaction between the amino groups and drug molecules is weak, and hence the controlled drug delivery would be possible.  相似文献   

8.
Thin layers of ceria were deposited on the surface of mica platelets in solution. The reaction of such particles with hydrogen sulfide yields a red colored special effect pigment. The ceria layer reacts with H2S to produce a variety of sulfide and oxysulfide phases. The reaction path discovered in situ by time and temperature resolved X-ray diffraction is CeO2→CeS2→C-Ce2S3→Ce10S14O. The reaction itself is extremely variable depending on gas flow, heating rates and decomposition atmospheres. Effects on the thin film are recorded by scanning electron microscopy (SEM) and revealed a destruction of the layer once red Ce10S14O was formed. The product layer then reveals the typical nonwetting behaviour of a liquid on a surface.  相似文献   

9.
This work provides the design and synthesis of nitrogen doped rutile TiO2 nanoparticles working as efficient photocatalysts under visible light irradiation. Nitrogen doped rutile TiO2 nanoparticles are synthesized through the surface nitridation of rutile nanoparticles, which have been prepared in advance. The experimental results show that the nitrogen element is easily doped into the lattice of TiO2 nanoparticles and its doping amount increases with the decrease of nanocrystallite size. The photocatalytic activity of the nanoparticles under visible light irradiation is correlated not only with the amount of doped nitrogen element but also with the morphology and crystallinity of nanoparticles.  相似文献   

10.
It is necessary to extend the absorption range of TiO2 based materials from the ultraviolet to the visible light region for most photo-catalytic applications of TiO2 under solar irradiance or indoor lighting. Also, the ability to control the structural evolution, particularly the competition and transformation between different phases (anatase or rutile), is extremely important for the preparation of high efficiency TiO2 based photo-catalysts. In this work, we have systematically studied the effects of various processing factors on the phase selection process/outcome of nanocrystalline Fe-doped TiO2, which includes the level of doping ions, annealing temperature, solution pH and the addition of acidic anions, using a low temperature hydrothermal method. Both Fe-doped rutile and anatase TiO2 phases were obtained via varying the processing conditions. The visible-light photo-catalytic activity of doped materials was significantly improved over that of the pure TiO2 nanopowders, which was demonstrated by effective degradation of methylene blue under visible light.  相似文献   

11.
A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid.  相似文献   

12.
An innovative synthesis of inorganic fullerene-like disulfide tungsten (IF-WS2) nanoparticles was developed using a chemical reduction reaction in a horizontal quartz reactor. In this process, first tungsten trisulfide (WS3) was formed via a chemical reaction of tetra thiotungstate ammonium ((NH4)2WS4), polyethylene glycol (PEG), and hydrochloric acid (HCl) at ambient temperature and pressure. Subsequently, WS3 was reacted with hydrogen (H2) at high temperature (1173-1373 K) in a quartz tube. The produced WS2 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), and transmission electron microscopy (TEM). The characterization results indicated that the high-purity (100%) IF-WS2 nanoparticles were produced. Moreover, addition of surfactant (PEG) and higher operating temperature (1173-1373 K) decreased the particles agglomeration, and consequently led to the reduction of average diameter of WS2 particles in the range of 50-78 nm. The developed method is simple, environmentally compatible, and cost-effective in contrast to the conventional techniques.  相似文献   

13.
Binary PbTe thermoelectric compounds have been successfully synthesized by alkaline reducing solvothermal, hydrothermal and low-temperature aqueous chemical routes using Pb(CH3COO)2·3H2O and pure tellurium as precursors, and NaBH4 as the reductant. Compared to PbTe powders synthesized by solvothermal and hydrothermal routes, smaller PbTe nanopowders of about 20 nm have been obtained by low-temperature aqueous chemical route. Possible formation mechanisms of PbTe were discussed.  相似文献   

14.
NdOHCO3 dodecahedral microcrystals with an orthorhombic structure have been successfully synthesized by the hydrothermal method used urea as the precipitator. Experimental parameters, such as the reaction temperature, the reaction time, and the molar ratio of the starting reagents were examined. The as-synthesized products were characterized by powder X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence. The possible growth process of NdOHCO3 dodecahedral microcrystals was discussed.  相似文献   

15.
To improve the dielectric properties of β-SiC powders, microwave synthesis was applied to produce SiC powders doped with different amounts of Al from fine powders of Si, C and Al under Ar atmosphere. The dielectric properties of the as-synthesized Al-doped SiC powders were investigated, and the mechanism of dielectric loss by doping has been discussed. The presence of Al influenced the formation of secondary phases (α-SiC and Al4SiC4) and the microstructure of the resultant powders. The produced powders form Al-SiC solid-solutions, which seemingly favor defect polarization loss effect in the high frequency region. This is consistent with the measurements of dielectric properties, which showed that doping of SiC with Al causes increase of permittivity, both real and imaginary parts, and loss tangent, within 8.2-12.4 GHz. The results show that SiC doped with 30% Al has the highest real part ?′ and imaginary part ?″ of permittivity and also loss tangent.  相似文献   

16.
Nitrogen doped anatase TiO2 (N-TiO2) were prepared by hydrothermally treating TiN with H2O2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS), Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirmed that the hydrothermal oxidation is an effective method to prepare N-doped TiO2 anatase. The nitrogen concentration in TiO2 could be controlled by the concentration of H2O2 solution. Photocatalytic degradation of methyl orange (MO) was carried out under visible light and UV-visible light irradiation, respectively. The as-prepared optimal N-TiO2 showed higher photocatalytic activity than N-P25 and P25, and exhibited excellent reusability.  相似文献   

17.
This work reports on seed-mediated synthesis and size control of monodispersed CeO2 nanoparticles. CeO2 nanoparticles of mean size smaller than 2 nm were first prepared by a simple mixing of aqueous solution of cerium (IV) sulfate and ammonia solution at ambient conditions. Using these as-prepared fine particles as the tiny seeds, tunable sizes of CeO2 nanoparticles were achieved via a facile hydrothermal treatment. All samples were characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA). It is shown that in comparison with other inorganic cerium salts such as cerium (III) nitrates, cerium (IV) sulfate appears more suitable for forming CeO2 nanoparticles at room temperature. Sulfate groups are strongly thermodynamically adsorbed on CeO2 nanoparticle surfaces. The formation mechanism, surface hydration and sulfation characteristics of the resulting CeO2 nanoparticles are also discussed.  相似文献   

18.
Nano-TiO2 powder was prepared by sol-gel method with modified precursor, tetrabutyl titanate (TBT), and photocatalytic oxidation was applied in removal of organics in the powder. The microstructure of as-prepared nano-TiO2 was determined using UV-vis, TEM, XRD and BET. The results indicated that the nano-TiO2, with grain size of 3.8 nm and specific surface area of 359.1 m2/g, was composed of anatase alone, and that it exhibited significant blue-shift in its UV-vis spectrum. The decomposition of organics in the sample was systematically investigated using FT-IR and TG-DTA. According to the testing results, we could conclude that organics in the samples were completely eliminated by means of photocatalytic oxidation. With photocatalytic decoloration of active brilliant red X-3B in aqueous solution as model reaction, the photocatalytic activity of as-prepared nano-TiO2 was investigated and was compared with that of the samples experiencing heat treatment and Degussa P-25 as well. The experimental results indicated that the photoactivity of as-prepared nano-TiO2 is much higher than that of the samples experiencing heat treatment.  相似文献   

19.
Cd1−xZnxS nanoparticles were prepared by a one-pot solvothermal process from Zn(CH3COO)2, Cd(CH3COO)2 and NaS2CNEt2·3H2O (sodium diethyldithiocarbamate, DDTC). The Cd1−xZnxS nanoparticles were characterized by X-ray powder diffraction, transmission electron microscope and high-resolution transmission electron microscope equipped with an energy-dispersive X-ray spectrometer. The absorption spectra of the Cd1−xZnxS nanoparticles can be tuned into visible region by modulating stoichiometric ratio between Zn and Cd. With the increase of Zn content, the Cd1−xZnxS nanoparticles showed an enhanced photocatalytic activity on degradation of 4-chlorophenol. The Cd1−xZnxS prepared under the optimal experimental condition (initial Zn/Cd = 3:1, 210 °C, 24 h, in ethanol) possessed the best photocatalytic activity. The conversion ratio could reach up to 84% after 12 h under irradiation of visible light for Cd1−xZnxS prepared in ethanol, which was obviously superior to those of products prepared in water. These results showed that both crystallinity and synthetic medium were responsible for the enhanced photocatalytic activity for 4-chlorophenol.  相似文献   

20.
Fe-Ru bimetallic nanoparticles were prepared by a microwave irradiation assisted glycol reduction method using poly-N-vinyl-2-pyrrolidone (PVP) as protective agent. The structure and morphology of the nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and high-resolution transmission electron microscopy (HRTEM). EDXA and XRD analysis confirmed the presence of Fe and Ru. The bimetallic nanoparticles were subsequently loaded onto an MgAl2O4 supporter with K2O as promoters and used as catalyst for water-gas shift reaction. The results indicated that the FeRu bimetallic nanoparticles exhibit high catalytic activity for water-gas shift reaction due to the synergistic effect between iron and ruthenium. Potassium oxide can enhance the CO selectivity of the catalyst significantly besides increasing the catalyst activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号