共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
针对在强噪声环境下,传统的超分辨率重建算法重建图像效果不佳的问题,提出一种基于峭度图像的超分辨率重建算法。定义峭度图像,从统计学角度分析得到峭度图像的2个重要性质,即具有高斯不变性,并且图像越模糊,峭度绝对值越小。在满足高分辨率图像与低分辨率图像之间反卷积的剩余误差有界的前提下,通过最大化峭度绝对值求解未知的高分辨率图像,采用Lagrange乘子法则求解此约束优化问题。分析高斯噪声和非高斯噪声环境下算法性能。仿真结果表明,该算法在主观视觉和客观评价上都明显优于传统算法。 相似文献
3.
针对一些超分辨率重建算法鲁棒性差、边缘保持能力有限、降噪效果不理想等不足,提出一种基于最大后验概率估计的边缘增强型非局部模型超分辨率重建算法。算法引入了非局部模型,并将图像的边缘信息加入模型系数的计算中,是对基于BTV(bilateral total variance)模型超分辨率重建和基于MRF(Markov random field)模型超分辨率重建的有效改进,提高了算法的鲁棒性、边缘保持能力和降噪能力。实验结果表明,该算法性能稳定,在信噪比较低情况下也能保持图像的边缘信息,取得比较好的重建效果。 相似文献
4.
基于多尺度结构自相似性的单幅图像超分辨率算法 总被引:2,自引:0,他引:2
多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率. 相似文献
5.
图像超分辨重建是从一系列降质的低分辨率图像中获取高分辨率的图像。在最大后验概率算法基础上提出了一种基于马尔可夫随机场的超分辨率重建算法,并通过迭代条件模型实现超分辨率图像重建。实验结果表明,与传统的超分辨率重建算法相比,该算法是一种快速的计算最大后验概率的方法,采用Potts-Strauss模型作为图像的先验概率密度函数,经过五、六次的迭代就能达到理想的迭代效果,解决了最大后验概率算法计算量大的缺点,是一种高效的超分辨率重建算法,具有一定的实用价值。 相似文献
6.
图像超分辨率算法目前最为通用的框架是基于Bayes估计的方法,其求解方法多归于重复背投影(插值)的迭代方法.在特定的成像条件下,基于训练的多核插值滤波器估计方法具有良好的效果.考虑采样过程对图像质量的影响,我们把多核插值滤波器估计方法引入到重复背投影的计算框架下,取得了优于单独使用一种方法的超分辨率结果. 相似文献
7.
图像的边缘细节信息直接影响图像的视觉质量。为了尽可能地保持图像边缘结构信息,提高超分辨率图像的质量,提出了一种基于张量的单幅图像超分辨算法。该方法利用张量对图像局部几何特征进行描述,然后根据采样点的局部特征估计待插值点的局部特征,最后通过这一估计的特征计算待插值点的灰度值。实验结果表明基于张量的超分辨方法能够较好地保持图像中的边缘结构信息,峰值信噪比(PSNR)、结构相似性系数(SSIM)等客观评价指标和主观视觉效果都比较好。 相似文献
8.
提出一种基于学习的金字塔人脸超分辨率算法,利用金字塔学习人脸图像梯度的空间分布特性,建立标准人脸训练库作为学习模型,采用塔状父结构从训练库搜索匹配特征信息相似度最高的小块,预测出最优的拉普拉斯金字塔先验模型,利用贝叶斯MAP框架求出高分辨率人脸图像。实验结果表明,与其他人脸超分辨率算法相比,在将人脸图像分辨率提高4×4倍的情况下,该算法生成的高分辨率人脸图像的平均峰值信噪比提高1.19 dB~2.4 dB,可以更好地消除噪声,具有较好的视觉效果。 相似文献
9.
提出一种针对正面人脸图像的超分辨率重建方法,通过学习人脸图像梯度的空间分布特性,获取梯度先验知识;通过结合贝叶斯最大后验概率估计理论,采用最速下降优化方法得到高分辨率人脸图像。实验结果表明,该方法在仅输入2—3幅低分辨率图像的情况下即可重建出具有较佳高频细节的超分辨率图像。 相似文献
10.
超分辨率重建就是通过相应的算法,重建图像截止频率之外的细节信息,重构出一幅清晰的高分辨率图像。首先介绍了超分辨率重建算法——非均匀内差法,迭代反投影法(IBP),凸集投影法(POCS),说明了各算法的概念和应用,并着重介绍了基于最大后验概率(MAP)的图像超分辨率算法,给出了MAP超分辨率复原算法处理实际太赫兹图像的结果。实验表明,超分辨率图像重建具有重建效果好、抗噪声性能强的优点,有效地重建了高分辨率太赫兹图像,在太赫兹成像领域具有良好发展和应用前景。 相似文献
11.
在自学习超分辨算法中,高低分辨率图像块匹配是否准确是算法的关键。在高低分辨率图像块匹配过程中,考虑图像块纹理结构的重要性,提出了一种基于纹理约束的图像块相似性度量模型,应用该模型完成了高低分辨率图像块更为准确的匹配,使超分辨结果图像的细节更加丰富,进一步提高了图像质量。该算法仅使用了单幅低分辨率图像自身的相关先验信息,有效提升了图像的空间分辨率。实验结果表明,与双三次插值算法、自相似学习超分辨算法相比,本文提出的算法超分辨视觉效果更好,并且在客观评价指标中同样表现良好。 相似文献
12.
提出一个单幅人脸图像的超分辨率重构算法。该算法建立在马尔可夫网络模型的基础上,引入了语义相似度的学习,将学习的范围限定在位置相关的特征语义区域,提升了学习算法的效率以及重构图像时的逼真性;重构算法中引入了权值融合机制,提升了输出图像的高频成分,有效地改善了图像的全局效果。分析和实验表明,该算法能在大容量训练集中,快速学习到有价值的图像信息,并且在图像的复原的过程中有效地抑制了图像失真现象,极大地改善了超分辨率图像的质量。 相似文献
13.
一种基于MAP的超分辨率图像重建的快速算法 总被引:3,自引:0,他引:3
超分辨率图像重建技术就是通过融合多幅变形、模糊、有噪、频谱混叠的低分辨率降质图像(或视频序列)来重建一幅高质量高分辨率图像.MAP估计算法是一种广泛使用的统计重建方法.针对标准MAP估计算法运算量大的问题提出了两点改进.第1点是当计算梯度时直接计算目标函数的增量,避免了函数值的冗余计算;第2点是采用非精确一维搜索确定步长,避免了运算量庞大的海塞矩阵的计算.实验结果表明,提出的改进在保持重建效果基本不变的前提下,在很大程度上提高了MAP超分辨率图像重建方法的速率,与此同时保证了算法的收敛性. 相似文献
14.
将低分辨率图像重建成高分辨率图像是图像处理领域中的一个重要课题。Yang 提出
一种基于联合字典学习的图像超分辨率重建算法,其算法样本选取与字典训练方法较为复杂。提
出一种基于MOD 字典学习的图像超分辨率重建新算法,首先采用少量的训练样本代替Yang 的大量训
练样本,然后使用MOD 字典学习算法代替Yang 的FFS 字典学习算法,最后利用字典对图像进
行稀疏表示与重建。实验结果表明,所提出的算法速度较快,并且重建图像的质量较高。 相似文献
15.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。 相似文献
16.
17.
基于学习的超分辨率算法利用样本先验信息重建高分辨率图像,在遥感、刑侦和医学图像领域有着广泛应用。论文分析了前沿的基于稀疏表达的图像超分辨率算法,实现了该算法功能,为了便于基于稀疏表达超分辨率算法的应用,论文设计并实现了基于对话框和参数调节控件的图像超分辨率算法框架,实验结果表明论文实现的算法框架具有良好的可用性和拓展性。 相似文献
18.
图像放大技术是医学图像处理中的重要领域.医学图像细节丰富处经常呈现出明显的几何结构特征或模式,如边缘.提出了一种基于学习的方法,将低分辨率图像块作为可用的邻域像素并提取其几何特征信息组成训练集,与高分辨率图像块之间建立局部对应关系,这种对应关系即为局部几何相似性.将训练集信息有效传递至待重建高分辨率图像块,图像放大的问题转化为重建系数的最优化问题,并且基于非局部平均思想,将其进而转化为加权最小二乘问题得到正则化解.实验结果表明,本方法不仅可以进行任意倍图像放大,且它可以摆脱一般方法对训练集合的依赖,具有较好的独立性,自适应性和边缘保持特性. 相似文献
19.
图像超分辨重建(Super-Resolution,SR)是指利用信号处理和机器学习等方法,从单幅或者多幅低分辨率图像(Low Resolution,LR)中重建对应的高分辨率图像(High Resolution,HR)的技术。由于多幅LR图像之间亚像素位移的不可预知性,单幅图像超分辨重建(Single Image Super-Resolution,SISR)逐渐成为超分辨研究的主要方向。近年来,深度学习方法得到迅速发展,并广泛应用到图像处理领域。因此,针对单幅图像超分辨重建所使用的深度学习相关算法和网络模型进行系统的总结。介绍图像超分辨问题的设置和评价指标;讨论和比较单幅图像超分辨重建的深度学习算法,主要从网络结构设计、损失函数和上采样方式三方面进行论述;介绍常用的标准数据集,并选用基于不同网络模型的几种典型算法进行实验对比分析;展望图像超分辨技术未来的研究趋势和发展方向。 相似文献
20.
单幅图像的超分辨率重建(single image super-resolution,简称SR)是一项重要的图像合成任务.目前,在基于神经网络的SR任务中,常用的损失函数包括基于内容的重构损失和基于生成对抗网络(generative adversarial network,简称GAN)的对抗损失.但是,基于传统的GAN的超分辨率重建模型(SRGAN)在判别器接收高分辨率图像作为输入时,输出判别信号不稳定.为了缓解这个问题,在SRGAN以及常用的VGG重构损失框架上,设计了一个稳定的基于能量的辅助对抗损失,称为VGG能量损失.该能量损失使用重构损失中的VGG编码部分,针对VGG编码设计相应的解码器,构建一个U-Net自编码结构VGG-UAE,利用VGG-UAE的重构损失表示能量,并使用该能量函数为生成器提供梯度;基于追踪能量函数的思想,VGG-UAE使生成器生成的高分辨率样本追踪真实数据的能量流.实验部分验证了使用VGG能量损失将比使用传统的GAN损失可以生成更有效的高分辨率图像. 相似文献