首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着互联网信息的不断膨胀,互联网已经进入了大数据时代。为了解决人们当前面临的信息过载问题,个性化推荐系统应运而生,系统核心是其所使用的推荐算法。slope one算法是一种简单高效的典型协同过滤推荐算法,算法通过对用户——项目评分矩阵进行线性回归,预测用户对于未评分项目的可能评分。由于算法的输入只有用户评分矩阵,而实际情况中的评分矩阵通常较为稀疏,因此数据稀疏性是影响其推荐准确率的主要问题。为了克服该问题,文章基于现有研究提出了一种改进的slope one算法。该算法根据所有用户对项目的历史评分计算其项目相似度,然后将其加入评分公式予以修正,同时针对稀疏的评分矩阵使用奇异值分解技术降低矩阵维度,生成更加稠密的相似矩阵作为slope one核心计算部分的输入。项目相似度的引入增加了算法对于项目内在联系的考虑,推荐结果更加合理。而奇异值分解则可以使稀疏的评分矩阵转换为更适用于算法计算的形式。通过项目相似性和奇异值分解两种技术的融合,文中算法实现了更好的推荐准确性和适应性。  相似文献   

2.
为解决协同过滤算法中的数据稀疏性问题,提出了一种改进的协同过滤算法。该算法使用slope one算法计算出来的评分预测值来填充评分矩阵中的未评分项目,然后在填充后的用户-项目评分矩阵上通过基于用户的协同过滤方法给出推荐。利用slope one算法计算出来的评分预测值作为回填值,既能降低评分矩阵的稀疏性,也保证了回填值的多样性,从而减少均值、中值等单一填充值造成的推荐误差。在MovieLens-1M数据集上对本文改进算法和协同过滤算法及均值中心化处理的算法作五折交叉实验,结果表明,基于评分预测值填充数据后的协同过滤算法有效的缓解了数据稀疏性问题,并且有更好的推荐效果。  相似文献   

3.
个性化推荐系统面临的难题是推荐的准确性、多样性以及新颖性,同时其数据集存在稀疏、信息缺失(如用户描述、项目属性以及明确的评分)等问题.协同标注中的标签包含丰富的个性化描述信息以及项目内容信息,因此可以用来帮助提供更好的推荐.算法以二部图节点结构相似与重启型随机游走为基础,分析音乐社交网络Last.fm中用户、项目、标签两两之间的联系,首先构建音乐间及标签间的相邻关系,初步得到音乐推荐列表和间接关联音乐集合,然后按所提算法融合结果,重新排序,得到最终推荐列表,从而实现个性化音乐推荐算法.实验表明,在该数据集上,所提方法能够满足用户对音乐的个性化需求.  相似文献   

4.
为解决传统推荐系统中的数据稀疏、关联性差、冷启动等方面的问题,有学者提出将社交中的信任关系引入推荐系统形成社会化推荐机制.这在一定程度上提高了推荐精度,但是显式信任信息很难获取并且现有的信任信息非常稀疏.针对加入用户信任信息算法的不足之处,提出了融入用户隐式信任的协同过滤推荐算法模型FITrustSVD,该模型是在Tr...  相似文献   

5.
6.
协同过滤推荐是最成功的推荐技术之一,但数据稀疏性问题导致推荐准确度和推荐效率不高.针对这个问题,提出了一种改进的加权Slope one协同过滤推荐算法.计算用户之间的评分相似度,找出每个用户的最近邻;根据最近邻用户评分,使用基于用户的协同过滤和改进的加权Slope one算法的加权评分预测目标用户的未评分项目;给出推荐.实验过程中采用MovieLens数据集作为测试数据.实验结果表明:与原算法相比,算法提高了预测准确度,有效提高了推荐性能.  相似文献   

7.
社会化推荐在一定程度上缓解了推荐中的数据稀疏性问题,但是通常仅考虑了社交网络中用户间的局部影响关系。综合考虑用户的局部影响力和全局影响力,提出了基于用户影响力游走模型的社会化推荐算法,该算法根据用户信任关系和历史行为分析用户的局部影响力,通过评估用户的评分质量研究用户的全局影响力,然后将二者有机结合计算随机游走模型中各节点之间的转移概率。通过与以往的算法在均方根误差、覆盖率和F-Measure等指标的实验结果表明,提出的算法在一定程度上提高了推荐的性能。  相似文献   

8.
9.
在机器视觉系统的训练过程中,需要大量带有标签的图像来增强识别能力。传统的方法是召集一部分人进行独立注释,效率低,质量差。本文设计一个基于众包的图像标注系统。该系统利用协同过滤技术将图片推送给具有相应专业或兴趣爱好的志愿者,然后通过语义处理算法对同一幅图片的标签集进行整理和归类,最后得出准确有效的标签。实验结果表明,该系统比传统图像标注方法有更好的鲁棒性和更高的效率。  相似文献   

10.
张峻玮  杨洲 《计算机科学》2014,41(12):176-178
为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。  相似文献   

11.
12.
针对协同过滤算法推荐结果存在受噪音数据影响严重的问题,提出了一种基于用户项目间的关联规则集的协同过滤算法.利用经典的Apriori算法进行频繁项集合关联规则集的挖掘,利用挖掘的关联规则集进行用户间的相似度计算,相比于pearson相似等方法,基于关联规则集相似可以提高改进算法对噪音数据的抵抗力,最后进行最近邻居集计算并产生更适合用户的推荐结果.改进算法和传统算法在MovieLens数据集上的实验表明,基于Apriori算法的协同过滤算法较传统算法进一步提高了推荐准度和覆盖率.  相似文献   

13.
传统基于项目的协同过滤算法在计算项目相似度时仅依靠评分数据,未考虑项目的自身特征。社会化标注的出现使得标签能在一定程度上反映项目特征,但标签具有语义模糊的特点,因此直接将标签纳入协同过滤算法存在一定问题。为解决上述问题,提出一种改进的基于项目的协同过滤推荐算法。该算法对标签进行聚类并生成主题标签簇,根据项目标注情况计算项目与主题间的相关度并生成项目-主题相关度矩阵,同时将其与项目-评分矩阵相结合来计算项目间的相似度,采用协同过滤完成对目标项目的评分预测,以实现个性化推荐。在Movielens数据集上的实验结果表明,该算法能够解决标签的语义模糊问题并提升推荐质量。  相似文献   

14.
15.
针对传统的基于用户的协同过滤推荐算法存在用户兴趣偏好模型过于粗糙和邻居集不够准确等问题,本文提出了一种新的协同过滤推荐算法,命名为基于用户间引力的协同过滤推荐算法。该算法认为用户使用的社会标签可以反映用户的喜好类型及喜好程度,利用社会标签构建用户喜好物体模型,并计算它们之间的万有引力,把万有引力的大小作为用户相似性的度量,在此基础上获得目标用户的邻居用户和评分预测,把获得预测评分高的若干项目推荐给用户。实验结果说明本文的算法可以获得较其它算法较优的推荐性能。  相似文献   

16.
陈彦萍  王赛 《微机发展》2014,(12):88-91
针对传统协同过滤方法中存在的冷启动和数据稀疏等问题,结合基于用户的协同过滤和基于项目的协同过滤提出一种混合协同过滤算法。在相似度的计算中提出改进算法来提高相似度计算的精确度;在预测未评分值时引入控制因子、平衡因子进行加权综合预测,最后再进行综合推荐。实验过程中采用Movie Lens数据集作为测试数据,同时采用平均绝对误差作为实验的测试标准。实验结果表明,基于用户-项目混合协同过滤算法在评分矩阵极度稀疏的环境下提高了推荐的性能,并能有效提高预测的精度。  相似文献   

17.
为解决协同过滤推荐(CFR)算法中的数据量过大和数据稀疏性的问题,采用因子分析的方法对数据降维,并使用回归分析方法预测待评估值,既减少了数据量又最大限度保留了信息。该算法首先,采用因子分析的方法将用户和项目降维为若干用户因子和若干项目因子;然后,以目标用户为因变量,以用户因子为自变量建立一个回归模型,并且以待评价项目为因变量,以项目因子为自变量建立另一个回归模型,进而得到目标用户在待评项目上的两个预测值;最后,通过两者的加权得到最终的预测值。实验仿真证实了算法的可行性和有效性。实验结果表明,该算法比基于项目的协同过滤推荐算法在精确度上有所提高。  相似文献   

18.
针对传统协同过滤推荐算法没有充分考虑用户属性及项目类别划分等因素对相似度计算产生的影响,存在数据稀疏性,从而导致推荐准确度不高的问题.提出一种基于用户属性聚类与项目划分的协同过滤推荐算法,算法对推荐准确度有重要影响的相似度计算进行了充分考虑.先对用户采用聚类算法以用户身份属性聚类,进而再对项目进行类别划分,在相似度计算中增加类别相似度,考虑共同评分用户数通过加权系数进行综合相似度计算,最后结合平均相似度,采用阈值法综合得出最近邻.实验结果表明,所提算法能够有效提高推荐精度,为用户提供更准确的推荐项目.  相似文献   

19.
协同过滤是推荐系统中应用最为广泛的方法.基于用户的协同过滤算法在计算用户相似性时,对不同的项目给予相同的权重,然而在现实中不同项目对刻画用户的兴趣所起作用不同,从而基于用户的协同过滤会造成对流行的项目打分高的问题,而不能真正反映用户的兴趣.本文提出项目的区分用户偏好值概念,从而更好的刻画了用户的兴趣,在此基础上,改进了计算用户相似度的方法,使推荐算法具有较高准确度.算法在标准数据集MovieLens上进行了测试,实验表明了算法的有效性.  相似文献   

20.
由于传统基于均方差的协同过滤算法(MSD)计算相似性时仅考虑评分向量间均方差值,导致其推荐性能不理想,针对这个问题,提出融合评分向量间余弦值和均方差值的改进均方差协同过滤算法(Improved MSD, IMSD)。通过在2个Movielens数据集上进行实验表明,IMSD算法较MSD算法的推荐准确度有所提高。更为重要的是,将IMSD算法进行推广应用,也能够取得较好的效果。本文将其应用于改进另外2种算法,即JAC_MSD和AC_MSD算法,并提出了2种相应的JAC_IMSD和AC_IMSD算法,发现算法的推荐准确度都有所提高。在所研究的几种算法中,AC_IMSD算法推荐准确度最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号