首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Abstract

Laser remelting has been performed on Ni-30 wt.% Sn hypoeutectic alloy. An anomalous eutectic formed at the bottom of the molten pool when the sample was remelted thoroughly. 3D morphologies of the α-Ni and Ni3Sn phases in the anomalous eutectic region were obtained and investigated using serial sectioning reconstruction technology. It is found that the Ni3Sn phase has a continuous interconnected network structure and the α-Ni phase is distributed as separate particles in the anomalous eutectic, which is consistent with the electron backscatter diffraction pattern examinations. The α-Ni particles in the anomalous eutectic are supersaturated with Sn element as compared with the equilibrium phase diagram. Meanwhile, small wavy lamella eutectics coexist with anomalous eutectics. The Trivedi–Magnin–Kurz model was used to estimate undercooling with lamellar spacing. The results suggest that the critical undercooling found in undercooling solidification is not a sufficient condition for anomalous eutectic formation. Besides, α-Ni particles in the anomalous eutectic do not exhibit a completely random misorientation and some neighboring α-Ni particles have the same orientation. It is shown that both the coupled and decoupled growth of the eutectic two phases can generate the α-Ni + Ni3Sn anomalous eutectic structure.  相似文献   

2.
采用熔融玻璃净化配合循环过热使Ni-32.5%Sn(质量分数)共晶合金实现了深过冷快速凝固.当过冷度大于某一临界值时,非规则共晶在凝固组织中出现.随着过冷度的提高,最终得到完全的非规则共晶组织.通过分析Ni-Sn共晶合金中各相形核、生长、以及枝晶熔断机制随过冷度的变化,解释了非规则共晶的形成机制.在深过冷条件下熔体中初生相率先形核并长入过冷熔体中,形成枝晶骨架,再辉重熔后次生相从残余熔体中析出并包围初生相,形成非规则共晶.  相似文献   

3.
采用金相显微镜、透射电镜、X射线衍射仪、显微硬度计以及微动磨损机研究了激光重熔等离子喷涂锌铝基Al2O3复合陶瓷涂层的组织结构、硬度及其耐磨性能.研究结果表明:等离子喷涂层由α-Al2O3和γ-Al2O3组成,层间为机械结合界面;经激光重熔后的组织为单一的体心四方结构的δ-Al2O3相,其点阵常数a0=7.943×10-8cm,c0=23.500×10-8cm,Al2O3与基体间的界面结合状况得到明显改善;熔覆后的Al2O3涂层硬度达150~170 HV100g,耐磨性能(S=L 988)比基体材料(S=2.837)有较大提高,其磨损机制是疲劳磨损和磨粒磨损,但以磨粒磨损为主.  相似文献   

4.
Microstructural changes in an AlMg6.8 alloy after different thermo mechanical (TMT) and sensitization treatments were investigated by electrical resistivity measurements. The electrical resistivity was most affected by the content of Mg solute atoms in the α-Al matrix, due to β-phase precipitation, while contribution of the dislocation density to the resistivity of the AlMg6.8 alloy was less pronounced. The amount and distribution of the β-phase precipitated during sensitization were found to be strongly affected by the microstructure developed under the previously applied TMTs, i.e. by the dislocation density and the primary β-phase particles in the dual (α + β) phase structure. During sensitization of the specimens with a recovered/recrystallized dual (α + β) phase structure, precipitation of randomly distributed, globular β-phase particles occurred. Sensitization of cold deformed and recrystallized single α-Al structures induced β-phase precipitation in the form of a continuous layer along the shear bands/grain boundaries.  相似文献   

5.
The damping capacity of Co–32 wt.% Ni alloy was investigated as a function of the amount of thermal and strain-induced martensite under non-magnetic and 900 Oe magnetic fields, respectively. The damping capacity of the Co–32 wt.% Ni alloy containing martensite without magnetic field consists of the magneto-mechanical damping capacity of mainly α phase, damping capacities of α and phases without magneto-mechanical damping effect. Under a magnetic field of 900 Oe, the more the thermal martensite mass fraction the higher the damping capacity. However, the damping capacity of the deformed Co–32 wt.% Ni alloy with the strain-induced martensite decreases with increasing deformation degree despite the increase in total martensite fraction, because the lattice defects like dislocations introduced during deformation act as barriers to movement of damping sources such as magnetic domain walls, stacking faults boundaries in both α and phases, and α/ interfaces.  相似文献   

6.
Microstructural characterization of α1-plate and γ2 phase precipitated in hypoeutectoid Cu–10 wt.%Al–0.8 wt.%Be shape-memory alloy (SMA) aged at 200 °C for different periods of time (20–160 h) is researched in this study. High-resolution transmission electron microscope (HRTEM) was employed to investigate the α1-plate with 18R long period stacking order structure (LPSO) in the SMA aged for 20 h. According to the atomic shuffling revealed in HRTEM-micrograph, the atomic model of the 18R LPSO is proposed. The quantitative mapping of electron energy loss spectrometry shows that the α1-plates in the SMA aged for 160 h contain lower aluminum concentration than the parent phase matrix. The lattice image of the nanometer-sized γ2 phase precipitated homogeneously in the SMA aged for 160 h is also revealed by using HRTEM. Precipitation of the nanometer-sized γ2 phase cannot be impeded by means of the addition of beryllium and quenching, and such precipitate does not grow up in the SMA aged for periods of time less than 160 h.  相似文献   

7.
Ferroelectric/antiferroelectric bi-layer ceramics with different ferroelectric and antiferroelectric phase thickness ratio (FE/AFE thickness ratio) in Pb(Nb, Zr, Sn, Ti)O3 system were prepared and characterized. With increasing the maximum external electric field from 0 to 40 kV/cm, polarization-electric field relation was always ferroelectric-like or underwent an antiferroelectric-ferroelectric transition, depending on the FE/AFE thickness ratio. All layered ceramics showed ferroelectric-like hysteresis loops with maximum external electric field of 40 kV/cm, and much higher remanent polarizations were attained than those of the ferroelectric/antiferroelectric heterostructures reported previously.  相似文献   

8.
The effect of Mn on the damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3 wt.%Ni based alloys has been studied. The damping vs. strain amplitude spectrum of the studied alloys could be divided into three parts. The strain amplitude weakly dependent part appears again when the microplastic strain occurs at high strain amplitude. The mechanical properties of as-cast Mg–3 wt.%Ni alloy could be improved by the addition of Mn, which is due to the refinement of α-Mg dendrites and solid solution strengthening by Mn. In addition, the corrosion resistance of the alloys could also be improved remarkably by the addition of Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号