共查询到17条相似文献,搜索用时 88 毫秒
1.
针对传统机器学习需要人工构建特征及特征质量较低等问题,提出一种新颖的基于一维卷积神经网络(Convolutional Neural Network,CNN)的特征提取方法。采用编码思想,由卷积层和下采样层构成编码器网络提取脑电信号情感特征,随后与特征图一起输入Leaky ReLU激活函数。对于卷积预训练过程,使用交叉熵和正则化项双目标优化损失函数,之后采用随机森林分类器以获得情感分类标签。在国际公开数据集SEED上进行实验,达到94.7%的情感分类准确率,实验结果表明了该方法的有效性和鲁棒性。 相似文献
2.
为了点对点自动学习脑电信号(Electroencephalogram,EEG)空间与时间维度上的情感相关特征,提高脑电信号情感识别的准确率,基于DEAP数据集中EEG信号的时域、频域特征及其组合特征,提出一种基于卷积神经网络(Convolution Neural Network,CNN)模型的EEG情感特征学习与分类算法。采用包括集成决策树、支持向量机、线性判别分析和贝叶斯线性判别分析算法在内的浅层机器学习模型与CNN深度学习模型对DEAP数据集进行效价和唤醒度两个维度上的情感分类实验。实验结果表明,在效价和唤醒度两个维度上,深度CNN模型在时域和频域组合特征上均取得了目前最好的两类识别性能,在效价维度上比最佳的传统分类器集成决策树模型提高了3.58%,在唤醒度上比集成决策树模型的最好性能提高了3.29%。 相似文献
3.
提出一种基于深度卷积联合适应网络(Convolutional neural network-joint adaptation network,CNN-JAN)的脑电信号(Electroencephalogram, EEG)情感识别模型。该模型将迁移学习中联合适应的思想融合到深度卷积网络中,首先采用长方形卷积核提取数据的空间特征,捕捉脑电数据通道间的深层情感相关信息,再将提取的空间特征输入含有联合分布的多核最大均值差异算法(Multi-kernel joint maximum mean discrepancy,MK-JMMD)的适配层进行迁移学习,使用MK-JMMD度量算法解决源域和目标域分布不同的问题。所提方法在SEED数据集上使用微分熵特征和微分尾端性特征分别进行情感分类实验,其中使用微分熵特征被试内跨试验准确率达到84.01%,与对比实验和目前流行的迁移学习方法相比,准确率进一步提高,跨被试实验精度也取得较好的性能,验证了该模型用于EEG信号情感识别任务的有效性。 相似文献
4.
由于传统的脑电信号分类方法识别率较低,且识别率随着脑电信号类别的增加逐渐下降,针对脑电信号时空特征结合的特点,设计了一个多层的卷积双向LSTM型递归神经网络(CBLSTM)分类模型。此分类模型利用多层的卷积神经网络有效提取脑电序列的频域特征,采用双向LSTM提取脑电信号的时域特征,并将脑电信号序列逐帧输入到此分类模型中进行标记,最后输出分类结果。对比研究验证了所提出方法的可行性,实验表明此分类模型平均分类识别率得到了提高,且鲁棒性较好。 相似文献
5.
希尔伯特-黄变换(HHT)是一种处理脑电信号(EEG)的有效方法,包括经验模态分解(EMD)和Hilbert变换2个部分。但EMD无法分解包含低能量的信号,且在低频区域会产生不良的本征模态函数。为消除EMD的弊端,提出一种小波包变换(WPT)和HHT相结合的EEG处理方法。采用WPT将EEG分解成一组窄带信号,通过HHT得到Hilbert能量谱,求出平均瞬时能量作为EEG特征并封装成特征矩阵。将特征矩阵通过卷积神经网络(CNN)、递归神经网络(RNN)、支持向量机(SVM)组成的混合情感识别模型进行训练与分类。实验结果表明,该方法对高兴、悲伤、平静、恐惧4种情感的平均识别率为86.22%,最优识别率为93.45%。 相似文献
6.
7.
针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率. 相似文献
8.
在当前科学技术快速发展的大背景下,通过应用卷积神经网络原理,能够将表面肌电信号的手势通过一维多通道的方式识别出来,避免在前期采用复杂的方法对表面信号进行预处理以及对信息采用手工提取方法所花费的时间.基于此,以右手为活动手,分析了握拳、向左、向右以及展拳4种手势时的表面肌电信号.将不同手势的肌电信号进行标记,生成信号长度不同的8通道信号训练集和测试集,并借助卷积神经网络的相关原理分析了卷积状态下的采样.借助相关研究后通过卷积神经网络的应用,能够实现卷积神经网络表面肌电信号的高效处理,从而实现对手势信号的识别,且识别率能够满足具体使用需求,因此其在实际工作中应用是有价值的. 相似文献
9.
《微型机与应用》2016,(9):58-61
针对现有的单一特征提取算法对运动想象脑电信号识别率不高的问题,提出一种以相关系数改进的经验模态分解(EMD)的特征提取算法。对已有的BCI竞赛数据中C3、C4两个通道脑电数据进行预处理,之后通过EMD对脑电信号进行分解,得到IMF分量。通过计算原始信号与各阶IMF分量之间的相关系数,选择具有较大相关系数的IMF作为特征,由这些IMF分量的能量特征和平均幅值差来组成脑电信号的特征。使用支撑矢量机分类器(SVM)对左右手运动想象脑电信号进行分类。实验结果表明,基于相关系数改进的EMD脑电信号的处理方法明显优于只用EMD的脑电处理方法,得到的最高正确识别率为88.57%。从而证明了该方法的有效性。 相似文献
10.
为了保留电极之间的空间信息以及充分提取脑电信号(Electroencephalogram,EEG)特征,提高情感识别的准确率,提出一种基于三维输入卷积神经网络的特征学习和分类算法.采用单熵(近似熵(Approximate Entropy,ApEn)、排列熵(Permutation Entropy,PeEn)和奇异值分解... 相似文献
11.
12.
近年,情绪识别研究已经不再局限于面部和语音识别,基于脑电等生理信号的情绪识别日趋火热.但由于特征信息提取不完整或者分类模型不适应等问题,使得情绪识别分类效果不佳.基于此,本文提出一种微分熵(DE)、卷积神经网络(CNN)和门控循环单元(GRU)结合的混合模型(DE-CNN-GRU)进行基于脑电的情绪识别研究.将预处理后的脑电信号分成5个频带,分别提取它们的DE特征作为初步特征,输入到CNN-GRU模型中进行深度特征提取,并结合Softmax进行分类.在SEED数据集上进行验证,该混合模型得到的平均准确率比单独使用CNN或GRU算法的平均准确率分别高出5.57%与13.82%. 相似文献
13.
针对大脑认知完好无损的患者,却患有重度神经肌肉疾病导致肢体行动受限的问题,为使患者重新获取障碍肢体的自主控制能力,本文提出了一种机械臂抓取任务的脑电分类方法对患者进行障碍肢体运动康复训练.首先使用非侵入式脑电技术对运动想象脑电信号进行采集,通过预处理、特征提取以及多尺度特征融合卷积神经网络进行分类识别;最后利用分类模型得到的标签解码成机械臂能够识别的指令,控制机械臂完成特定任务.实验结果表明:实验选取的15名健康受试者运动想象实验采集的脑电数据具有可行性,平均准确率达到了82%以上;为机械臂抓取任务的脑电分类提供了一种新思路. 相似文献
14.
情绪是由大脑内多个通道共同作用产生的,格兰杰因果检验作为情绪识别的主流方法,在计算任意2个通道之间的因果关系时容易忽略其他通道的影响。面向多通道脑电信号,提出一种基于条件格兰杰因果检验(CGC)的因果网络情绪识别方法。利用CGC算法计算不同情绪下大脑全通道的因果关系,据此构建因果网络,并通过分析各通道的入/出度和介数拓扑属性找到关键通道,得到简化的因果网络进行情绪识别。将节点之间的因果连接关系作为特征分别输入SVM和KNN分类器进行分类训练,实验结果表明,简化网络的识别率分别为75.3%和78.4%,验证了所提方法的有效性。 相似文献
15.
人体动作识别是视频理解领域的重要课题之一,在视频监控、人机交互、运动分析、视频信息检索等方面有着广泛的应用.根据骨干网络的特点,从2D卷积神经网络、3D卷积神经网络、时空分解网络三个角度介绍了动作识别领域的最新研究成果,并对三类方法的优缺点进行了定性的分析和比较.然后,从场景相关和时间相关两方面,全面归纳了常用的动作视... 相似文献
16.
当代社会睡眠问题日益突出,及时检测评估睡眠质量有助于诊断睡眠疾病.针对目前市面上睡眠监测类产品发展参差不齐的现状,本文搭建了一个基于双通道脑电信号的在线实时睡眠分期系统,利用第三方接口脑环获取脑电数据,结合CNN-BiLSTM神经网络模型,在PC电脑端实现了在线的实时睡眠分期与音乐调控功能.系统使用基于卷积神经网络CNN和双向长短时记忆神经网络BiLSTM相结合的算法模型对脑电信号进行自动特征提取,CNN能够提取高阶特征, BiLSTM可以捕捉睡眠数据前后的依赖性和关联性,睡眠分期准确率更高.实验结果表明,本文算法模型在Sleep-EDF公共数据集上的四分类任务中取得了92.33%的分期准确率,其Kappa系数为0.84,本系统的实时睡眠分期功能在自采集睡眠数据分期实验中取得79.17%的分期准确率,其Kappa系数为0.70.相比其他睡眠监测类产品,本系统睡眠分期准确率更高,应用场景更多样,实时性和可靠性强,并且可以根据分期结果对用户进行相应的音乐调控,改善用户睡眠质量. 相似文献
17.
针对单一模态情感识别精度低的问题,提出了基于Bi-LSTM-CNN的语音文本双模态情感识别模型算法.该算法采用带有词嵌入的双向长短时记忆网络(bi-directional long short-term memory network,Bi-LSTM)和卷积神经网络(convolutional neural networ... 相似文献