AbstractIn recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. 相似文献
AbstractContext: Flutamide is a potent anti-androgen with the several unwanted side effects in systemic administration, therefore, it has attracted special interest in the development of topically applied formulations for the treatment of androgenic alopecia.Objective: The purpose of this study was to prepare and characterize the solid lipid nanoparticles (SLNs) of Flutamide for follicular targeting in the treatment of the androgenic alopecia.Methods: Flutamide-loaded SLNs, promising drug carriers for topical application were prepared by hot melt homogenization method. Drug permeation and accumulation in the exercised rat skin and histological study on the male hamsters were performed to assess drug delivery efficiency in vitro and in vivo, respectively.Results: The optimized Flutamide-loaded SLNs (size 198?nm, encapsulation efficiency percentage 65% and loading efficiency percentage 3.27%) exhibited a good stability during the period of at least 2 months. The results of X-ray diffraction showed Flutamide amorphous state confirming uniform drug dispersion in the SLNs structure. Higher skin drug deposition (1.75 times) of SLN formulation compared to Flutamide hydroalcoholic solution represented better localization of the drug in the skin. The in vivo studies showed more new hair follicle growth by utilizing Flutamide-loaded SLNs than Flutamide hydroalcoholic solution which could be due to the higher accumulation of SLNs in the hair follicles as well as slowly and continues release of the Flutamide through the SLNs maximizing hair follicle exposure by antiandrogenic drug.Conclusion: It was concluded Flutamide-loaded SLN formulation can be used as a promising colloidal drug carriers for topical administration of Flutamide in the treatment of androgenic alopecia. 相似文献
The crystallisation of the MeAPSO-34 material was studied under dry-gel conversion conditions and using two and three templates. This study has been focused on the effect of the incorporation of a mixture of Ni and Mn into the SAPO-34 framework. The MeSAPO-34 samples were characterised by X-ray diffraction, energy-dispersive X-ray spectrometer, scanning electron microscope, temperature-programmed desorption and Brunner–Emmett–Teller. The influence of metal incorporation into the framework of SAPO-34 (MeAPSO-34) on methanol conversion was investigated in this study. The performances on methanol conversion for these catalysts were different according to the properties of metals incorporated into the SAPO-34 structure. The catalytic performance demonstrated high activity and light olefins selectivity for the prepared catalysts. Among the light olefin products, Mn and Ni incorporation is helpful for propylene generation, but samples with a mixture of Ni and Mn favour the ethylene production. 相似文献
The high cost and poor atom utilization efficiency of noble metal catalysts have limited their industrial applications. Herein, we designed CeO2-supported single Au(III) ion catalysts with ultra-low gold loading that can enhance the utilization efficiency of gold atoms and bridge the gap between homogeneous and heterogeneous gold catalysis. These catalysts were highly active and reusable for the reaction of 1,3-dicarbonyls with alcohols. The catalytic turnover number of CeO2-supported single Au(III) ion catalysts was much higher than that of the homogeneous catalyst NaAuCl4. In addition, the effects of gold loading and the drying method for the catalysts on the organic reactions were systematically explored. In-depth investigation of the structure–property relationship by highresolution transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray absorption near edge structure analysis, UV–vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy revealed that the isolated Au(III) ions were related to the active sites for the synthesis of β-substituted cyclohexenone and that CeO2 was responsible for yielding ketonic ester.
AbstractHigh temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. 相似文献
Two types of high chromium ferritic steels envisaged as construction materials for SOFC interconnects, were investigated in respect to microstructure and creep in the proposed application temperature range from 700 to 800 °C. The steel compositions mainly differed in the amounts of the Laves phase forming elements Nb, W and Si. The steel containing these alloying additions exhibited substantially higher creep resistance in the temperature range 700-800 °C than the high purity steel. The Laves phase formation occurred trans- as well as intragranular whereby the extent and size of grain boundary precipitates increased with increasing exposure time. Especially at 800 °C the precipitates inside the grains virtually completely vanished after longer exposure times and only intergranular precipitates remained. This change in precipitate morphology resulted especially at 800 °C in a decrease of creep resistance with increasing exposure time, although the Laves phase containing steel still exhibited higher creep strength than the high purity steel. 相似文献
One-dimensional carbon nanotubes and two-dimensional graphene nanosheets with unique electrical, mechanical and thermal properties are attractive reinforcements for fabricating light weight, high strength and high performance metal-matrix composites. Rapid advances of nanotechnology in recent years enable the development of advanced metal matrix nanocomposites for structural engineering and functional device applications. This review focuses on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets. These include processing strategies of carbonaceous nanomaterials and their composites, mechanical and tribological responses, corrosion, electrical and thermal properties as well as hydrogen storage and electrocatalytic behaviors. The effects of nanomaterial dispersion in the metal matrix and the formation of interfacial precipitates on these properties are also addressed. Particular attention is paid to the fundamentals and the structure–property relationships of such novel nanocomposites. 相似文献
A comparative analysis of harmonic and biharmonic boundary-value problems for 2D problems on a rectangle is given. Some common features of two types of problems are emphasized and special attention is given to the basic distinction between them. This distinction was thoroughly studied for the first time by L. N. G. Filon with respect to some plane problems in the theory of elasticity. The analysis permits to introduce an important aspect of the general solution of boundary-value problems. The procedure for solving the biharmonic problem involves both the method of homogenous solutions and the method of superposition. For some cases involving self-equilibrated loadings on one pair of sides of the rectangle, the complete solution, including calculation of the quantitative characteristics of the displacements and stresses, is given. The efficiency of the numerical implementation of the general solutions is shown. The analysis of the quantitative data allows to elucidate some main points of the Saint-Venant principle. 相似文献
Based on the significantly different melting points and high oxygen affinities, the fabrication of chromium-based tungsten silicides is restricted to powder metallurgical production routes. To foster particle contacts and diffusion processes between chromium and tungsten, which are known to necessitate long sintering times, mechanical alloying or milling processes prior to sintering are established. Nonetheless, due to spinodal decomposition of Cr and W, the solid solution formation is complex and yet little understood. For this reason, the influence of the mechanical milling time (0–24 h) on the crystal structure and the microstructural properties of hot-pressed 60Cr30W10Si (wt.–%) is examined. In this context, two different powders containing a different tungsten particle size (0.8 and 3 µm) were mechanically alloyed to analyze the impact on the phase formation and the particle distribution in the microstructure. It was shown that mechanical milling supported the mechanical clamping between the particles. However, the increased milling times significantly decreased the crystallite sizes of the particles and fostered the tungsten solubility in the Cr-rich (Cr, W) solid solution formed during sintering, thus supporting the densification. 相似文献
We have deposited amorphous silicon (a-Si) and nanocrystalline silicon (nc-Si) materials and the total p-i-n configurations for solar cells in a high vacuum multichamber system ASTER using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) process. The deposition process is monitored and controlled by in-situ diagnostic tools to maintain reproducibility of the material quality. In this paper we show our recent results on single junction (amorphous silicon) and tandem (a-Si/nc-Si) cells on plastic foil using the Helianthos concept. The tandem cell efficiency on Asahi U-type SnO2:F coated glass is ~ 12% and this is achieved by employing nc-Si deposited at high pressure (p) conditions of 5 mbar and a small inter-electrode distance (d) of 5 mm. The deposition scheme of this cell on glass was adapted for the SnO2:F coated Al foil substrates from Helianthos b.v., especially taking into account the expansion of the foil during deposition. The inter-electrode distance d was one of the variables for this optimisation process. Depositions at four inter-electrode distances of 6 mm, 8 mm, 10 mm and 12 mm (keeping the pressure-distance product constant) revealed that the deposition rate increases at higher distances, reaching 0.6 nm/s at a d of 10 mm and pressure p of 3.0 mbar. The Raman crystalline ratio showed a monotonic increase with the combination of higher d and lower p. Tandem cells with an area of 2.5 cm2 on plastic foil fabricated by the Helianthos concept and employing the above mentioned nc-Si made at 0.6 nm/s in the bottom cell and a-Si in the top cell, showed an efficiency of 8.12%, with a short circuit current density of 10 mA/cm2. The combined deposition time of the photoactive silicon layers of the top and bottom cells amounted to only 85 min. 相似文献
High temperature uniaxial compression is conducted on Ca3Co4O9 layered cobaltite, in order to achieve a thermoelectric oxide with low resistivity by the development of (0 0 1) texture. It is found that flow stress varies depending on deformation temperature and strain rate. Development of a sharp texture having the maximum (0 0 1) pole density of about 33 times as high as the random level is achieved. It is found that the high temperature compression process is quite effective for the simultaneous achievement of densification and (0 0 1) texture development. It is experimentally confirmed that resistivity decreases drastically by the construction of a sharp (0 0 1) texture. 相似文献