首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We propose a guide for designing double-layer ceramic absorbers in microwave heating by optimizing the thickness based on the analysis of reflection loss (RL) of a double-layer absorber consisting of a high-loss SiC layer and a low-loss Al2O3 layer. The calculated reflection losses for individual layers of SiC and Al2O3 show that the former with a thickness of 0.0054 m has the maximum microwave absorption while the latter in the thickness range up to 0.1 m is identified as a poor microwave absorbing material with RL larger than −0.4 dB. By using a 0.0054-m-thick SiC layer as the susceptor, the absorption in the Al2O3 layer and of the entire double-layer absorber increases significantly. The results demonstrate that high microwave absorption throughout the heating process can only be achieved in a sample with a small thickness in which a slight absorption peak shift during heating (less than one eighth-wavelength in the medium) occurs.  相似文献   

2.
The ferrite/reduced graphene oxide (rGO) composites have attracted increasing attention due to the combination of the dielectric loss of rGO and the magnetic loss of ferrites. In this paper, pod-like 3D Ni0.33Co0.67Fe2O4@rGO composites were prepared using a solvothermal reaction followed by cold quenching. The structures and morphologies of as obtained composites were characterized using X-ray diffractometer, Raman microscope, photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The Ni0.33Co0.67Fe2O4 microspheres with a diameter of 100–150?nm were wrapped in rGO rolls due to the shrinkage of rGO in liquid nitrogen. The rGO sheets with ferrite microspheres wrapped in form the pod-like 3D network morphology. The minimum reflection loss of as-prepared composites reaches ?47.5?dB and the absorption bandwidth (RL<?10?dB) is 5.02?GHz. The composites show much better absorbing performances than pure Ni0.33Co0.67Fe2O4 microspheres and Ni0.33Co0.67Fe2O4-rGO mixture formed by mechanically blending of cold quenched pure rGO and ferrite microspheres.  相似文献   

3.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

4.
In this work, single- and double-layer electromagnetic wave absorbers were prepared by as-prepared MWCNTs/BaTiO3/pitted carbonyl iron composites. MWCNT/BaTiO3 (MW/BTO) was prepared via sol-gel method whereas the carbonyl iron particles (CI) were corroded via pitting corrosion method. The structural, microstructural, magnetic and microwave absorption properties of the composites were evaluated via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA) methods. CST studio software was employed to simulate the microwave absorption characteristics of double-layer absorbers. Moreover, the effects of changing matching and absorbing layer thickness (3 mm in total) and filler loading (10, 20 and 30 wt%) of the as-prepared composite on the microwave absorption properties were investigated. According to the results, maximum RL value for single layer absorber with 20 wt% filler loading can reach ?11.5 dB at 9.7 GHz with 3 mm thickness and 0.4 GHz bandwidth. In contrast, double-layered absorber using 10 wt% of the composite in the upper layer (as matching layer) and 30 wt% of the composite in lower layer (as absorbing layer) can increase the reflection loss and absorption bandwidth values to ?15.5 dB and 1 GHz respectively. Improving in absorption characteristics can be attributed to coupling interactions, impedance matching and multiple scattering. The main advantages of the prepared double layer absorber than single layer absorber are tuning the intensity and effective absorption bandwidth by adjusting the layer order, thickness and filler loading of each layer which shown good potential for practical application.  相似文献   

5.
The current paper focuses on synthesizing a high-efficiency microwave absorber via incorporating the nanofillers of graphene oxide-polyaniline (GO-PANI), barium-strontium titanate (BST), and soft-hard ferrite within the polyester matrix. The nanocomposite magnets of (Ba0.5Sr0.5Fe12O19)1-x hard/(CoFe2O4)x soft (x = 0.2, 0.5, and 0.8) were prepared using sol-gel auto-combustion method. The GO-PANI and BST were successfully synthesized by in situ polymerization and improved polymerization, respectively. The phase structure, chemical structure, morphology, and microwave absorption properties of the synthesized nanocomposites were characterized by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM), vector network analyzer (VNA) techniques, respectively. The results showed that the synergistic effects of the combination of dielectric (BST), conductive (GO-PANI), and magnetic materials (hard-soft ferrites) provided the reflection loss values of less than ?20 dB (>99% absorption) in the X-band region. The minimum reflection loss of ?35 dB (>99.99% absorption) was obtained by the optimal formulation including (Ba0.5Sr0.5Fe12O19)0.2 (CoFe2O4)0.8, and the weight ratio of 1: 2 for both BST/soft-hard ferrite and hard-soft ferrite + BST/GO-PANI with the thickness of 1 mm. According to the results, the thickness factor plays a key role in improving the impedance matching. Consequently, the proposed nanocomposite can be employed as a novel kind of microwave absorbers with good impendence matching and high absorption.  相似文献   

6.
Nickel ferrites with high theoretical capacitance value as compared to the other metal oxides have been applied as electrode material for energy storage devices i.e. batteries and supercapacitors. High tendency towards aggregation and less specific surface area make the metal oxides poor candidate for electrochemical applications. Therefore, the improvements in the electrochemical properties of nickel ferrites (NiFe2O4) are required. Here, we report the synthesis of graphene nano-sheets decorated with spherical copper substituted nickel ferrite nanoparticles for supercapacitors electrode fabrication. The copper substituted and unsubstituted NiFe2O4 nanoparticles were prepared via wet chemical co-precipitation route. Reduced graphene oxide (rGO) was prepared via well-known Hummer's method. After structural characterization of both ferrite (Ni1-xCuxFe2O4) nanoparticles and rGO, the ferrite particles were decorated onto the graphene sheets to obtain Ni1-xCuxFe2O4@rGO nanocomposites. The confirmation of preparation of these nanocomposites was confirmed by scanning electron microscopy (SEM). The electrochemical measurements of nanoparticles and their nanocomposites (Ni0.9Cu0.1Fe2O4@rGO) confirmed that the nanocomposites due to highly conductive nature and relatively high surface area showed better capacitive behavior as compared to bare nanoparticles. This enhanced electrochemical energy storage properties of nanocomposites were attributed to the graphene and also supported by electrical (I-V) measurements. The cyclic stability experiments results showed ~65% capacitance retention after 1000 cycles. However this retention was enhanced from 65% to 75% for the copper substituted nanoparticles (Ni0.9Cu0.1Fe2O4) and 65–85% for graphene based composites. All this data suggest that these nanoparticles and their composites can be utilized for supercapacitors electrodes fabrication.  相似文献   

7.
A simple, cost-effective, efficient, and green approach to synthesize iron oxide/graphene (Fe3O4/rGO) nanocomposite using in situ deposition of Fe3O4 nanoparticles on reduced graphene oxide (rGO) sheets is reported. In the redox reaction, the oxidation state of iron(II) is increased to iron(III) while the graphene oxide (GO) is reduced to rGO. The GO peak is not observed in the X-ray diffraction (XRD) pattern of the nanocomposite, thus providing evidence for the reduction of the GO. The XRD spectra do have peaks that can be attributed to cubic Fe3O4. The field emission scanning electron microscopy (FESEM) images show Fe3O4 nanoparticles uniformly decorating rGO sheets. At a low concentration of Fe2+, there is a significant increase in the intensity of the FESEM images of the resulting rGO sheets. Elemental mapping using energy dispersive X-ray (EDX) analysis shows that these areas have a significant Fe concentration, but no morphological structure could be identified in the image. When the concentration of Fe2+ is increased, the Fe3O4 nanoparticles are formed on the rGO sheets. Separation of the Fe3O4/rGO nanocomposite from the solution could be achieved by applying an external magnetic field, thus demonstrating the magnetic properties of the nanocomposite. The Fe3O4 particle size, magnetic properties, and dispersibility of the nanocomposite could be altered by adjusting the weight ratio of GO to Fe2+ in the starting material.  相似文献   

8.
The main goal in this work was to prepare and characterize a kind of novel superparamagnetic poly(ε-caprolactone)/Fe3O4@graphene oxide (PCL/Fe3O4@GO) nanocomposites via facile in situ polymerization. Fabrication procedure included two steps: (1) GO nanosheets were decorated with Fe3O4 nanoparticles by an inverse co-precipitation method, which resulted in the production of the magnetite/GO hybrid nanoparticles (Fe3O4@GO); (2) incorporation of Fe3O4@GO into PCL matrix through in situ polymerization afforded the magnetic nanocomposites (PCL/Fe3O4@GO). The microstructure, morphology, crystallization properties, thermal stability and magnetization properties of nanocomposites were investigated with various techniques in detail. Results of wide-angle X-ray diffraction showed that the incorporation of the Fe3O4@GO nanoparticles did not affect the crystal structure of PCL. Images of field emission scanning electron microscope and transmission electron microscopy showed Fe3O4@GO nanoparticles evenly spread over PCL/Fe3O4@GO nanocomposites. Differential scanning calorimeter and polar optical microscopy showed that the crystallization temperature increased and the spherulites size decreased by the presence of Fe3O4@GO nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. Thermogravimetric analysis indicated that the addition of Fe3O4@GO nanoparticles reduced the thermal stability of PCL in the nanocomposites. The superparamagnetic behavior of the PCL/Fe3O4@GO nanocomposites was testified by the superconducting quantum interference device magnetometer analysis. The obtained superparamagnetic nanocomposites present potential applications in tissue engineering and targeted drug delivery.  相似文献   

9.
Carbon black (CB) with contents of 5.5?wt% and 15?wt% filled quartz glass fiber reinforced polyimide (SiO2f/PI) composite were designed and prepared. A double-layer absorbing material was designed using the two composites materials as a matching layer and an absorption layer, respectively. The microwave absorption property of single-layer and double-layer composites is calculated according to transmission line theory. The results show that the microwave absorbing property of double-layer composite is better than that of single-layer at the same thickness. When the 5.5?wt%CB doped SiO2f/PI composite is used as the matching layer with a thickness of 0.7?mm and 15?wt%CB doped SiO2f/PI composite is used as the absorption layer with a thickness of 0.9?mm, the RL (reflection loss) of the composite reaches a minimum value of ?46.18?dB at 16.07?GHz. Meanwhile, the bandwidth of RL?≤??5?dB is 5.87?GHz and the bandwidth of RL?≤??10?dB is 3.95?GHz.  相似文献   

10.
The Li0.35Zn0.3Fe2.35O4 micro-belts were prepared by cotton template for the first time. The nickel-coated carbon fibers were obtained by the electroless plating method. The formation mechanism of the ferrite micro-belt was studied. The microwave absorption properties of the two layers absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers composites were investigated in the frequency range of 30–6000 MHz. The absorbers of the Li0.35Zn0.3Fe2.35O4 micro-belts/nickel-coated carbon fibers composites have much better microwave absorption properties than the nickel-coated carbon fibers absorbers, and the microwave absorption properties of the composites are influenced by the content of the absorber.  相似文献   

11.
《Ceramics International》2022,48(10):13541-13550
Due to their strong magnetic dissipation and low cost, ferrites were one of the first generations of microwave absorbers. However, ferrites also have some drawbacks, such as a low natural resonance frequency (fr), a lack of dielectric loss, and high density. In order to overcome these drawbacks and improve the microwave dissipation features of ferrites, we successfully prepared CoFe2O4 samples with flower-like and crochet ball-like morphologies (named as M1 and M2 samples, respectively). Structural and optical properties were studied by XRD, FTIR, and UV–Vis light absorption. The microwave performance of CoFe2O4 was significantly improved with the reflection loss (RL) of M2 of ?40 dB. Furthermore, M1 and M2 samples achieved an ultra-wide effective absorption bandwidth (EAB) of 13 and 12.5 GHz, respectively. It is worth noticing that the EAB of M1 was one of the largest EABs for CoFe2O4 that has been reported so far. The excellent microwave dissipation of M1 and M2 samples in the 2–18 GHz frequency range was due to the enhancement of ferrite fr to the high-frequency range and the introduction of dielectric loss to achieve impedance matching. The flower-like and crochet ball-like morphologies with many pores of M1 and M2 also resolved the high-density issue of CoFe2O4. With the relatively good values of RL and EAB combined with low filler loading, thin thickness, and low density, M1 and M2 samples could be expected to be promising microwave absorbers for practical applications.  相似文献   

12.
The three-dimensional porous Fe3O4/graphene composite foam as a new kind of absorbing composite with electrical loss and magnetic loss was successfully synthesized by a facile method. Fe3O4 was evenly attached on structure of graphene sheets which overlapped with each other to form three-dimensional porous graphene foam. The results revealed that when the mass ratio of graphene oxide (GO) and Fe3O4 was 1:1, the Fe3O4/graphene composite foam possessed the best absorption properties: the minimum reflection loss was up to ??45.08?dB when the thickness was 2.5?mm and the bandwidth below ??10?dB was 6.7?GHz when the content of the composite foam absorbents was just 8%. The micron-sized three-dimensional porous structure provided more propagation paths, enhancing the energy conversion of incident electromagnetic waves. The addition of Fe3O4 contributed to improving the impedance matching performance and magnetic loss. The three-dimensional porous Fe3O4/graphene composite foam was a kind of high-efficiency wave absorber, providing a new idea for the development of microwave absorbing materials.  相似文献   

13.
Magnetic/dielectric composites can offer good electromagnetic impendence. However, the strategy for embodying strong absorbing ability and broad effective absorption band simultaneously is a significant challenge. Therefore, assembled porous Fe3O4@g-C3N4 hybrid nanocomposites have been designed and synthesized, in which porous Fe3O4 nanospheres assembled by ~ 3?nm Fe3O4 nanoparticles are surrounded by g-C3N4. The introduction of g-C3N4 improves dielectric loss ability at 2–18?GHz and magnetic loss ability at 2–10?GHz, and enhances attenuation constant, and increases electromagnetic impedance degree. These merits ensure that assembled porous Fe3O4/g-C3N4 hybrid nanocomposites deliver superior microwave absorption performance, such as effective absorption bandwidth, fE, (reflection loss less ??10?dB) exceeding 5?GHz at 2.0–2.3?mm, the maximal fE of 5.76?GHz and minimal reflection loss of at least ??20?dB with thickness ranging from 2.3 to 10.0?mm, avoiding the sensitivity of absorption properties to absorbing layer thickness. Stable microwave absorbing performance originates from multi-interfacial polarization, multi-reflection, enhanced electromagnetic loss capability, and good electromagnetic impedance. Our study offers a new idea for stable microwave absorber at 2–18?GHz.  相似文献   

14.
《Ceramics International》2020,46(14):22313-22320
Design of high-performance electromagnetic (EM) wave absorbing materials has been regarded as an effective solution to excessive EM wave interference problem. As a promising candidate, NiCo2O4 absorbers have attracted enormous research attentions. However, currently reported morphology-manipulation synthetic methods of NiCo2O4 absorbers are time-consuming and require high energy consumption, which inhibit their practical applications. Herein, a more facile and cost-effective solution combustion synthesis was utilized to fabricate NiCo2O4 materials. The absorber prepared by using glycine as fuel displayed the best EM wave absorption performance. Impressively, ultra wide absorption bandwidth of 7.44 GHz from 10.56 GHz to 18 GHz could be achieved with relatively thin thickness of 2.1 mm NiCo2O4 sample fabricated in this work displayed the widest effective absorption bandwidth (EAB) among reported NiCo2O4-based EM wave absorbing materials so far. In view of its simple and low-cost synthetic process and excellent EM wave dissipation capacity, NiCo2O4 samples in this work showed great feasibility as practical absorber. In addition, our findings may also provide new sight for facile preparation of other high-performance EM wave absorbers by solution combustion synthesis instead of complex morphology-manipulation routes.  相似文献   

15.
《Ceramics International》2023,49(13):21613-21623
Microwave absorbing (MA) materials with yolk-shell structures have been extensively studied in impedance matching. However, the impedance matching achieved by the complementary effect of the core and the shell does not determine the reflection of the microwaves upon the occurrence at the first incidence. The interaction between the outer layer of materials and the electromagnetic waves significantly impacts the MA properties of materials. In this study, the impedance matching improvement method of the shell structure was further explored by preparing CoFe2O4@HCN (honeycomb carbon with N-doping) through the hydrothermal method followed by hydrolysis, polymerization, etching, and annealing. The resulting structure with heteroatoms doping provided the novel CoFe2O4@HCN with excellent impedance matching and multiple loss mechanisms contributing to MA process. The absorber with a filler loading of 40% exhibited an RLmin of −68.03 dB with a matching thickness of 2.5 mm. The efficient absorbing bandwidth reached 5.92 GHz (a change from 11.92 to 17.84 GHz) at 1.99 mm thickness. Interestingly, these findings look promising for future synthesis and application of yolk-shell structure microwave absorbers.  相似文献   

16.
Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection loss (RL ≤ −10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials.  相似文献   

17.
《Ceramics International》2020,46(15):23932-23940
A three-step strategy combining solvothermal and liquid phase reduction method had been developed for preparation of magnetic triple-shell hollow structural Fe3O4/FeCo/C (TSH–Fe3O4/FeCo/C) composite microspheres. FeCo was used to enhance electromagnetic (EM) wave absorption in different frequency band and broaden effective absorbing bandwidth, while carbon was used to improve impedance matching. Triple-shell hollow structure was designed to enrich the multiple interfaces to favor the interfacial polarization, increase the multiple reflections and scattering, and provide physicochemical protection to Fe3O4 core from oxidation. The microstructure and morphology of TSH-Fe3O4/FeCo/C composite microspheres were characterized by TEM, XRD and Raman in detail. The results indicated that magnetic Fe3O4 was completely covered by FeCo and carbon via layer by layer. As an EM wave absorber, the maximum reflection loss of TSH-Fe3O4/FeCo/C composite microspheres was up to -37.4 dB due to better normalized characteristic impedance at a thickness of 2.2 mm and the bandwidth less than -10 dB even reached up to 5.9 GHz. The excellent EM wave absorption performance was attributed to the combination of shell materials (Fe3O4, FeCo and carbon) and unique triple-shell hollow structure, which lead to multiple relaxation processes and good impedance matching. Consequently, this work would contribute to the design and preparation of high performance EM wave absorbent with outstanding absorbing property and wider absorption range.  相似文献   

18.
This study demonstrates that the enzymatic reaction rate can be increased significantly by targeted heating of the microenvironment around the enzyme, while maintaining the reaction system at environmental temperature. Enzyme molecules are covalently attached to the surface of Fe3O4@reduced graphite oxide (rGO). Under visible-light irradiation, the reaction rate catalyzed by the enzyme–Fe3O4@rGO system is clearly enhanced relative to that of the free enzyme and a mixture of free enzyme and Fe3O4@rGO. This local heating mechanism contributes to promotion of the enzymatic reactions of the targeted heating of the enzyme (THE) system, which has been validated by using different enzymes, including lipase, glucose oxidase, and organophosphorus hydrolase. These results indicate that targeted heating of the catalytic centers has the same effect on speeding up reactions as that of traditional heating methods, which treat the whole reaction system. As an example, it is shown that the THE system promotes the sensitivity of an enzyme screen-printed electrode by 14 times at room temperature, which implies that the THE system can be advantageous in improving enzyme efficiency, especially if heating the entire system is impossible or could lead to degradation of substrates or damage of components, such as in vitro bioanalysis of frangible molecules or in vivo diagnosis.  相似文献   

19.
《Ceramics International》2022,48(16):22896-22905
Spinel ferrites are widely used for electromagnetic wave (EMW) absorption applications. In this study, spinel Ni–Zn ferrites with excellent microwave absorption properties were synthesized. Their EMW absorption characteristics and interaction mechanisms were studied to lay the foundation for the study of the role of Ni–Zn ferrite as a magnetic substrate for composites. Herein, Ni0·5Zn0·5Fe2O4 was prepared by the hydrothermal method (H-NZFO) and the sol–gel auto-combustion method (S-NZFO); both samples exhibited distinct microwave absorption properties. The S-NZFO absorber (thickness = 3.72 mm) demonstrated the best dual-zone microwave absorption with two strong reflection loss peaks at 5.1 and 10.5 GHz. The corresponding effective absorption bandwidth (EAB) reached 9.0 GHz, which covered part of the S-band and all of the C- and X-bands. These results were attributed to the high saturation magnetization, outstanding complex permeability, and multiple magnetic loss channels of S-NZFO. The H-NZFO sample exhibited excellent absorption capability and matching thickness. At a thickness as low as 1.71 mm, the minimum reflection loss (RLmin) of the H-NZFO absorber reached -60.2 dB at 13.1 GHz. The maximum bandwidth corresponding to RL below -10 dB was 4.6 GHz. These results can be attributed to small particle size, high complex permittivity, and multiple dielectric loss channels of H-NZFO. The observed wide effective absorption bandwidth of S-NZFO and strong microwave absorption capability of H-NZFO suggest the potential of both materials as substrates for efficient microwave absorbers in military as well as civilian absorption applications.  相似文献   

20.
To solve the heavy mass problem of the traditional spinel ferrite using as the microwave absorber, the CoxZn(1?x)Fe2O4 (= 0.2, 0.4, 0.6, 0.8) ferrite nanofibres were synthesized by electrospinning method. The phase composition, morphology, and electromagnetic properties were analyzed. The results showed that all the as‐prepared CoxZn(1?x)Fe2O4 ferrites exhibited the homogeneous nanofibrous shape. The saturation magnetization and coercivity were enhanced by tuning the Co2+ content. The electromagnetic loss analysis indicated that the Co0.6Zn0.4Fe2O4 ferrite nanofiber performed the strongest microwave attenuation ability. The microwave absorbing coating containing 15 wt% of Co0.6Zn0.4Fe2O4 ferrite nanofiber showed the reflection loss less than ?10 dB in the whole X‐band and 80% of the Ku‐band frequencies. Meanwhile, the surface density was only 2.4 Kg/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号