首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm?1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.  相似文献   

2.
The method of brazing by capillary impregnation of Cu–Ga melt through a titanium powder layer situated between brazed details is elaborated. Samples of ZrO2 ceramic/metal brazed joints using Cu–Ga–Ti filler and Cu–Sn–Pb–Ti filler were fabricated. The joints’ shear strength was 277±37 MPa for the Cu–Ga–Ti and 156±25 MPa for the Cu–Sn–Pb–Ti.  相似文献   

3.
Carbon–carbon composite (C–C composite) and TiB whiskers reinforced Ti–6Al–4V composite (TiBw/Ti–6Al–4V composite) were brazed by Cu–Ni + TiB2 composite filler. TiB2 powders have reacted with Ti which diffused from TiBw/Ti–6Al–4V composite, leading to formation of TiB whiskers in the brazing layer. The effects of TiB2 addition, brazing temperature, and holding time on microstructure and shear strength of the brazed joints were investigated. The results indicate that in situ synthesized TiB whiskers uniformly distributed in the joints, which not only provided reinforcing effects, but also lowered residual thermal stress of the joints. As for each brazing temperature or holding time, the joint shear strength brazed with Cu–Ni alloy was lower than that of the joints brazed with Cu–Ni + TiB2 alloy powder. The maximum shear strengths of the joints brazed with Cu–Ni + TiB2 alloy powder was 18.5 MPa with the brazing temperature of 1223 K for 10 min, which was 56% higher than that of the joints brazed with Cu–Ni alloy powder.  相似文献   

4.
Evaluations of vacuum brazed commercially pure titanium and low-carbon steel joints using one copper-based alloy (Cu–12Mn–2Ni) and two silver-based braze alloys (Ag–34Cu–2Ti, Ag–27.25Cu–12.5In–1.25Ti) have been studied. Both the interfacial microstructures and mechanical properties of brazed joints were investigated to evaluate the joint quality. The optical and scanning electron microscopic results showed that all the filler metals interact metallurgically with steel and titanium, forming different kinds of intermetallic compounds (IMC) such as CuTi, Cu2Ti, Cu4Ti3, and FeTi. The presence of IMC (interfacial reaction layers) at the interfacial regions strongly affects the shear strength of the joints. Furthermore, it was found that the shear strength of brazed joints and the fracture path strongly depend on the thickness of the IMC. The maximum shear strength of the joints was 113 MPa for the specimen brazed at 750 °C using an Ag–27.25Cu–12.5In–1.25Ti filler alloy.  相似文献   

5.
The filler alloy of nominal composition Cu–40Mn–10Ni (all in wt%) was prepared in the form of ribbon of 40 μm thick by melt spinning technique. The ribbon exhibits narrow melting zone and comprise single phase of Cu–Mn–Ni solid solution. The melt spun ribbon successfully brazed 304 stainless steel butt joints. The formation of solid solution in the joining area without any intermetallics is observed. The bonding strength of filler alloy is achieved around 456 MPa.  相似文献   

6.
Cf/LAS composites and TC4 alloy were brazed successfully by vacuum brazing using Ag–Cu–Ti active filler metal. The interfacial microstructure was characterized by a scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The effects of brazing temperature on the interfacial microstructure and joint properties were investigated in details. Various phases including TiC, TiSi2, Ti3Cu4, Cu (s,s), Ag (s,s), TiCu and Ti2Cu were formed in the brazed joints. Interfacial microstructure varies greatly with the increase of brazing temperature, while the amount of Ti2Cu reduced, but no new phase is generated. The optimal shear strength of the joint is 26.4 MPa when brazed at 890 °C for 10 min. Shear test indicated that the fracture of the brazed joints went through the TiSi2 + TiC layer close to the Cf/LAS composites interface.  相似文献   

7.
Silicon carbide particles were used as reinforcement in the Ag-26.7Cu-4.6Ti (wt.%) brazing alloy for joining C/C composite to TC4 (Ti-6Al-4V, wt.%). The mechanical properties of the brazed joints were measured by shear strength testing. The effects of the volume percentage of SiC particles on the microstructures of the brazed joints were investigated. It is shown that the maximum shear strength of the joints is 29 MPa using 15 vol.% SiC in the brazing alloy which is greater than that with Ag-26.7Cu-4.6Ti brazing alloy alone (22 MPa). Ti is reacted with SiC particles, forming Ti–Si–C compound in the particle-reinforced brazing alloy. Due to this, more SiC particles in the brazing alloy, the thickness of TiC/TiCu reaction layer near C/C composite decreases. Moreover, SiC particles added to the brazing alloy can reduce the CTE of the brazing alloy which results in lower residual stress in the C/C composite-to-metal joint. Both of the above reasons lead to the increasing of the shear strength of the brazed joints. But excessive SiC particles added to the brazing alloy lead to pores which results in poor strength of the brazed joint.  相似文献   

8.
Microstructure and fracture behavior of brazed joint between commercially pure titanium and low carbon steel using silver (Ag–34Cu–2Ti) and copper (Cu–12Mn–2Ni) based alloys have been characterized to determine the effect of brazing parameters and chemical composition on the strength of brazed joints. It is found that the shear strength of brazed joints strongly depends on the lap width. Furthermore, the fracture path and the value of shear strength significantly changed with the type of filler alloy. The two filler metals showed metallurgical interaction with steel and titanium forming different kinds of intermetallic compounds such as CuTi, Cu2Ti, and FeTi with silver based filler and Ti2Cu, FeTi and TiCuFe with copper based filler.  相似文献   

9.
A TiH2–50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH2–50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH2–50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 °C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 °C for 15 min using TiH2–50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.  相似文献   

10.
Infrared brazing Inconel 601 and 422 stainless steel using the 70Au-22Ni-8Pd braze alloy is performed in the experiment. The brazed joint is primarily comprised of Au-rich and Ni-rich phases, and there is no interfacial intermetallic compound observed in the joint. The (Ni,Fe)-rich phase is observed at the interface between 422SS and the braze alloy, and the Ni-rich phase is found at the interface between the braze alloy and IN601. With increasing the brazing temperature and/or time, the microstructures of the brazed joint is coarsened. For the infrared brazed joint at 1050C for 180 s shows the highest average shear strength of 362 MPa. In contrast, the shear strength of the infrared brazed joint is higher than that of the furnace brazed specimen due to coarsening of the microstructure in the furnace brazed joint.  相似文献   

11.
Brazing 6061 Al alloy to 304 stainless steel by flame brazing has been carried out with an improved CsF–RbF–AlF3 flux which matched Zn–xAl filler metals. The results showed that, the spreading area on stainless steel of Zn–xAl filler metals has been improved with the addition of RbF to CsF–AlF3 flux. It is found that a Zn-rich phase appeared between the brazing seam and the intermetallic compound (IMC) layer in the joints brazed with Zn–2Al and Zn–5Al filler metals, and the thickness of the IMC layer was approximately 1.76–6.45 μm which increased with the increase of Al added to the filler metals. Moreover, a Fe4Al13 phase formed in the IMC layer, while a Fe2Al5 phase appeared as the second layer in Zn–25Al brazed joint. Neither the Zn-rich phase nor Fe2Al5 phase was found in the joint brazed with Zn–15Al filler metal, so that the joint was exhibited the maximum shear strength which was up to 131 MPa. All the lap joints were fractured at the interfacial layer of the brazing seam and stainless steel.  相似文献   

12.
A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ∼2.5 μm min−1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.  相似文献   

13.
Mo particles have been introduced into Ag–Cu–Ti brazing alloy for the joining of Si3N4 ceramic. Effect of brazing temperature on microstructure and mechanical properties of the joints were investigated. The result shows that a continuous reaction layer which is composed of TiN and Ti5Si3 was formed at the Si3N4/braze interface. The central part of the joint was composed of Ag-based solid solution, Cu-based solid solution, Mo particles, and Cu–Ti intermetallic compounds. By increasing the brazing temperature, both the thickness of the reaction layer and amount of Cu–Ti intermetallic compounds in the joint increased, being beneficial for the joint strength. Whereas, the reaction between Ti and Si3N4 ceramic proceeded excessively and more Cu–Ti intermetallic compounds were precipitated in the joint while elevating the brazing temperature to 950 °C, leading to deterioration of the bending strength. The maximal bending strength reached 429.4 MPa at 900 °C for 5 min when the Si3N4 ceramic was brazed with Ag–Cu–Ti + Mo composite filler.  相似文献   

14.
A novel graphene reinforced BNi-2 composite filler was developed for brazing GH99 superalloy. The interfacial microstructure of brazed joints was analyzed by field emission scanning electron microscope and a transmission electron microscope. The effects of graphene addition on the microstructure evolution and mechanical properties of brazed joints were investigated, and the strengthening mechanism of graphene was analyzed. The results revealed that due to the addition of graphene, M23(C,B)6 compounds were synthesized in the γ solid solution and brittle boride precipitates near the brazing seam decreased. Graphene was effective in retarding solute atoms diffusion thus impeding the precipitation of borides. Furthermore, the low coefficient of thermal expansion (CTE) of graphene was conducive to relieve stress concentration of the brazed joints during the cooling process. The shear strengths of brazed joints were significantly improved by exerting the strengthening effect of graphene. The maximum shear strengths of the brazed joints were 410.4?MPa and 329.7?MPa at room temperature and 800?°C, respectively.  相似文献   

15.
In this article, a series of Sn–xZn solders are designed for joining Mg/Al dissimilar metals by low temperature brazing. The effect of Zn content in Sn–Zn solders on microstructure evolution and mechanical properties of the different brazed joints are investigated. The experimental results indicate that Sn–30Zn alloy is identified as the optimized solder. Al–Sn–Zn solid solutions form and disperse in the brazing zone of the Mg/Sn–30Zn/Al brazed joint, decreasing the risk of embrittlement of the brazed joint. The average shear strength of Mg/Sn–30Zn/Al brazed joint can reach 70.73 MPa. The joint fractures in the coarse blocky Mg2Sn intermetallic phases in the center of the brazing zone.  相似文献   

16.
Newly-developed CoFeNi(Si, B)CrTi brazing filler metal was used for joining of SiC to a wrought nickel-based superalloy (GH3044). The brazing alloy was fabricated into brazing foils by a rapid solidifying technique, and the brazing temperature was fixed at 1150 °C. The SiC/GH3044 joints using single interlayer Ni or triple interlayers of Ni/W/Ni showed very low strength, and this was because the Ni severely interfered with the normal reactions between the SiC and the brazing alloy. When using triple interlayers of Kovar/W/Ni for the SiC/GH3044 joining, the joint strength was remarkably elevated to 62.5-64.6 MPa. Kovar has a low coefficient of thermal expansion. Moreover, when Kovar was used as an interlayer neighboured to the brazed SiC, it basically ensured the normal interfacial reactions between the brazed SiC and the used brazing alloy. These two factors should account for the improvement of the joint strength.  相似文献   

17.
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques.

It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.  相似文献   


18.
In this study, Si3N4 ceramic was jointed by a brazing technique with a Cu–Zn–Ti filler alloy. The interfacial microstructure between Si3N4 ceramic and filler alloy in the Si3N4/Si3N4 joint was observed and analyzed by using electron-probe microanalysis, X-ray diffraction and transmission electron microscopy. The results indicate that there are two reaction layers at the ceramic/filler interface in the joint, which was obtained by brazing at a temperature and holding time of 1223 K and 15 min, respectively. The layer nearby the Si3N4 ceramic is a TiN layer with an average grain size of 100 nm, and the layer nearby the filler alloy is a Ti5Si3Nx layer with an average grain size of 1–2 μm. Thickness of the TiN and Ti5Si3Nx layers is about 1 μm and 10 μm, respectively. The formation mechanism of the reaction layers was discussed. A model showing the microstructure from Si3N4 ceramic to filler alloy in the Si3N4/Si3N4 joint was provided as: Si3N4 ceramic/TiN reaction layer/Ti5Si3Nx reaction layer/Cu–Zn solution.  相似文献   

19.
Induction brazing of Inconel 718 to Inconel X-750 using Ni-7Cr-3Fe-3.2B-4.5Si (wt.-%) foil as brazing filler metal was investigated in this paper. Brazing was conducted at the temperature range 1373–1473 K for 0–300 s in a flow argon environment. Both interfacial microstructures and mechanical properties of brazed joints were investigated to evaluate joint quality. The optical and scanning electron microscopic results indicate that good wetting existed between the brazing alloy and both Inconel 718 and Inconel X-750. Microstructures at joint interfaces of all samples show distinct multilayered structures that were mainly formed by isothermal solidification and following solid-state interdiffusion during joining. The diffusion of boron and silicon from brazing filler metal into base metal at the brazing temperature is the main controlling factor pertaining to the microstructural evolution of the joint interface. The element area distribution of Cr, Fe, Si, Ni and Ti was examined by energy dispersive X-ray analysis. It was found that silicon and chromium remain in the center of brazed region and form brittle eutectic phases; boron distribution is uniform across joint area as it readily diffuses from brazing filler metal into base metal. The influence of heating cycle on the microstructures of base material and holding time on the mechanical properties of brazed joint were also investigated.  相似文献   

20.
This study aimed at determining whether data previously gathered for a laser welds and IR brazings using a Au–Pd alloy were applicable to titanium joints. As to its resistance under fatigue loading, Au–Pd alloy had shown a poor response to pre-ceramic laser welding and post-ceramic brazing. The present study was designed to assess the mechanical resistance, the microstructure and the elemental diffusion of laser welded, electric arch welded and brazed joints using commercially pure titanium as substrate metal.Mechanical resistance was determined by determining the joints' ultimate tensile strength and their resistance to fatigue loading. Elemental diffusion to and from the joints was assessed using microprobe tracings. Optical micrographs of the joints were also obtained and evaluated.Under monotonic tensile stress, three groups emerged: (1) the GTAW and the native (i.e. as received) substrate, (2) the annealed substrate and the laser welds and (3) the brazed joints. Under fatigue stress, the order was: first the native and annealed substrate, second the brazings and laser welds, third the GTAW joints. No Au-filler brazing withstood the applied fatigue loading. The micrographs showed various patterns, an absence of HAZ cracking and several occurrences of Widmanstätten structures. Elemental diffusion to and from the Ti substrate was substantial in the Ti filler brazings and virtually nil in the Au-based brazings.Under fatigue stress application, the titanium-based brazings as well as the laser- and electric arc welds performed equally well if not better than a previously tested AuPd alloy. There was a definite increase in grain size with increased heat application. However, no feature of the microstructures observed or the elemental analysis could be correlated with the specimen's resistance to fatigue stress application. © 2001 Kluwer Academic Publishers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号