首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.  相似文献   

2.
Nanostructured titanium oxide (nano-TiO x ) thin films for uncooled IR detectors were fabricated by dc reactive magnetron sputtering and post-deposition annealed in oxygen atmosphere. The crystalline structure and surface morphology were characterized by glancing incidence X-ray diffraction (GIXRD) and field emission scanning microscopy. The results of GIXRD measurements indicate that TiO x thin film deposited at room temperature is amorphous. A mixture of anatase and rutile nanocrystalline structure phase were present in oxygen annealed TiO x thin film. A weak absorption peak around 438 cm?1 corresponding to Ti–O stretching vibration is observed by Fourier transform infrared spectroscopy with annealed TiO x thin film. The X-ray photoelectron spectra reveals Ti3+ and Ti4+ ions are coexisting in TiO x films. The optical spectra of the films indicate that the optical absorption edge of the nano-TiO x film exhibits a red shift compared to the as-deposited film. Furthermore, compared to bulk TiO x , a blue shift was observed in both of the deposited and annealed films due to quantum size effect. The dependence of resistivity on temperature reveals both the absolute value of temperature coefficient of resistivity (TCR) and activation energy of TiO x thin film increase significantly after annealing in oxygen.  相似文献   

3.
TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti–Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile–amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.  相似文献   

4.
A modified sol-gel method was used to fabricate (Pb0.25Bax Sr0.75−x)TiO3 (PBST) thin films with x = 0.05,0.1,0.15 and 0.2 on Pt/TiO2/SiO2/Si substrate. The structure, surface morphology, dielectric and tunable properties of PBST thin films were investigated as a function of barium content (x). X-ray diffraction and scanning electron microscopy analysis showed that we could get pure PBST perovskite phase and relative fine density thin films with smooth surface. It was found that the crystal lattice constant, grain size, room temperature dielectric constant, dielectric loss and tunability of Ba solutionizing PST thin films increased with the increase in Ba content. For (Pb0.25Ba0.2Sr0.55)TiO3 thin film, it had the highest dielectric constant of 1390 and the largest tunability of 80.6%. The figure of merit parameter reached a maximal value of 28.9 corresponding to the (Pb0.25Ba0.05 Sr0.7)TiO3 thin film, whose dielectric constant, dielectric loss and tunability measured at 1 MHz were 627, 0.024 and 69.4%, respectively.  相似文献   

5.
Nitrogen-doped titanium dioxide (TiO2  xNx) thin films desirable for visible light photocatalysts were prepared by reactive sputtering using air/Ar mixtures. Using air as the reactive gas allows the process to conduct at high base pressures (low vacuum), which reduces substantially the processing time. The obtained films transformed from mixed phases to anatase phase as the air/Ar flow ratio increased. Substitutional doping of nitrogen verified by X-ray photoelectron spectroscopy accounts for the red-shift of absorption edge in the absorption spectra. Anatase TiO2  xNx films could incorporate up to about 7.5 at.% substitutional nitrogen and a maximum of 23 at.% nitrogen was determined in the films with mixed phases. The optical band gaps of the TiO2  xNx films calculated from Tauc plots varied from 3.05 to 3.11 eV and those of the mixed phase ranged from 2.77 to 3.00 eV, which are all lower than that for pure anatase TiO2 and fall into the visible light regime.  相似文献   

6.
Tantalum doped TiO2 thin films ((TiO2)1−x (Ta2O5) x , x=0, 0.1%, 0.3%, 0.5%, 0.8%) were prepared on ITO-coated substrates by means of the sol–gel method and spin coating technology followed by rapid thermal annealing treatment (RTA). The effects of various processing parameters, including Ta content (x=0–0.8%) and annealing temperature, on the growth and properties of thin films were investigated. Structural characteristics by X-ray diffraction analysis indicated that the doping of Ta2O5 in the TiO2 without change the anatase structure of TiO2 thin films. The optical transmittance of (TiO2)1−x (Ta2O5) x thin films decrease from 50% down to 20% with increasing the Ta2O5 concentrations from x=0.00 to x=0.8%. The absorption coefficient shows energy gap were decreased with increasing Ta2O5 content from 2.932 eV for x=0.00 to 2.717 eV for x=0.8%. Doping TiO2 with Ta2O5 can lower its band gap and shift its optical response to the visible region.  相似文献   

7.
Amorphous TiOx films and Ag layer were deposited by electron-beam evaporation on soda-lime glass at room temperature. The details regarding the structure, surface morphology, and optical properties of the as-prepared TiOx films were examined by X-ray diffraction, scanning electron microscopy, and ultra-violet (UV) -visible-near-infrared (NIR) spectrometry. The TiOx films exhibit amorphous phase with an optical band gap of 3.35 eV. The polygrains oriented along the (111) and (200) directions in the Ag films were adopted to supply carriers into the TiOx film and lower the sheet resistance of the stacked layer. The multilayer exhibited a sufficiently large Ag thickness (>15 nm), low resistance, high UV transmittance, visible transmittance, and high NIR reflection. Dependence of Ag thickness, TiOx bottom-layer, and TiOx overlayer on the optical and electrical properties of TiOx/Ag/TiOx were explored. A figure of merit (FOM) was used to find an optimal structure for a multilayer with superior conductivity and visible transparency. An FOM of 9.8 × 10?2?1) at the visible wavelength of 550 nm for a TiOx/Ag/TiOx stacked layer with an 18-nm-thick Ag and a 20-nm-thick TiOx was achieved. The TiOx/Ag/TiOx sample annealed at 500 °C 10 min also shows a good thermal stability.  相似文献   

8.
The TiOx thin films were prepared by electron beam evaporation using TiO as the starting material. The effect of the annealing temperature on the optical and electrical properties was investigated. The spectra of X-ray photoelectron spectroscopy reveal that Ti in the films mainly exist in the forms of Ti2+ and Ti3+ below 400 °C 24 h annealing. The charge transfer between different titanium ion contribute greatly to the color, absorption, and electrical resistance of the films.  相似文献   

9.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

10.
In this paper, optical and electrical properties of E-Beam deposited TiO2/Si thin films have been studied and investigated extensively. The films were deposited on p-type (100) silicon wafer by using electron beam evaporation technique. The thickness of the thin films was measured by a spectroscopic reflectometer, which is about 216 nm. The fabricated titanium oxide (TiO2) thin films were annealed at 800 °C for 1 h under N2 ambient. X-ray diffraction measurements were performed to study the structure and phase identification of the fabricated TiO2 thin films. For the optical properties, reflection, transmittance, refractive index and absorption coefficient were obtained and analyzed. The photocurrent and dark current of the fabricated films were measured by IV measurements. The measurement of the current–voltage (IV) characteristics possesses good ohmic contact. The electrical characterizations of the films were performed in the range of the low frequencies (50 and 100 kHz) and high frequencies (750 kHz and 1 MHz) by the capacitance–voltage and conductance–voltage measurements at room temperature. The capacitance of the fabricated TiO2 MOS capacitor at both high and low frequencies increases with the decrease in frequencies. The obtained conductance curves (peaks) increase with the decreasing in the frequencies. This can be due to the interface state density, series resistance and interfacial dielectric of the fabricated MOS capacitors. The variation in the characteristics of the fabricated film shows that TiO2 is a promising candidate to be used in the optoelectronic and future UV detector applications as a switch, such as an optical amplifier, emitter, and UV light detectors.  相似文献   

11.
TiO2 and (NdyTi1  y)Ox thin films were deposited by reactive magnetron sputtering process from mosaic Ti–Nd targets and characterised by X-ray diffraction (XRD), Raman optical spectroscopy and nanoindentation technique. XRD measurements revealed that as-prepared titanium dioxide and TiO2 thin films with 4 and 7 at.% of Nd had nanocrystalline rutile structure, while coatings with larger amount of Nd were amorphous. Raman spectroscopy investigations showed that the increase of the neodymium concentration caused amorphisation of the coatings and hindered their crystal growth. All as-prepared coatings were transparent in the visible wavelength range with a transmittance of approximately 80%. The refractive index and extinction coefficient of the thin films gradually decreased with the increase of the neodymium concentration. Micro-mechanical properties, i.e. hardness and elastic modulus, were determined using traditional load-controlled nanoindentation testing and continuous stiffness measurements. The highest hardness and elastic modulus values were obtained for thin films with 7 at.% of Nd and were approximately 14.8 GPa and 166.3 GPa, respectively.  相似文献   

12.
We have studied TiO2, Ag, Ag/TiO2, and Cu/TiO2 coatings grown on track-etched polyethylene terephthalate membranes. The metals and oxides were deposited by reactive vacuum sputtering using a planar magnetron. The microstructure of the samples were examined by scanning and transmission electron microscopy techniques. The elemental composition of the coatings were determined by energy dispersive X-ray microanalysis, and their phase composition was determined by X-ray diffraction at different temperatures and by transmission electron diffraction. Titanium dioxide can be present on the surface of track-etched membranes (TMs) in three forms: nanocrystals of tetragonal anatase with orthorhombic brookite and amorphous TiO2 impurities. The copper-metallized TM has been shown to contain cubic Cu2O. The optical properties of the composite membranes and films have been studied by absorption spectroscopy. The energies of direct and indirect allowed optical transitions have been evaluated from measured absorption spectra of the TiO2, Ag/TiO2, and Cu/TiO2 coatings.  相似文献   

13.
In this study, preparation of SnO2 (0–30 mol% SnO2)–TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process has been investigated. The effects of SnO2 on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO2 content. The prepared Sn doped TiO2 photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO2 thin films was measured in the TiO2–15 mol% SnO2 sample by the Sn4+ dopants presented substitution Ti4+ into the lattice of TiO2 increasing the surface oxygen vacancies and the surface hydroxyl groups.  相似文献   

14.
T. Kubart  J. Jensen  L. Liljeholm  S. Berg 《Vacuum》2009,83(10):1295-1298
Titanium dioxide thin films have many interesting properties and are used in various applications. High refractive index of titania makes it attractive for the glass coating industry, where it is used in low-emissivity and antireflective coatings. Magnetron sputtering is the most common deposition technique for large area coatings and a high deposition rate is therefore of obvious interest. It has been shown previously that high rate can be achieved using substoichiometric targets. This work deals with reactive magnetron sputtering of titanium oxide films from TiOx targets with different oxygen contents.The deposition rate and hysteresis behaviour are disclosed. Films were prepared at various oxygen flows and all films were deposited onto glass and silicon substrates with no external heating. The elemental compositions and structures of deposited films were evaluated by means of X-ray photoelectron spectroscopy, elastic recoil detection analysis and X-ray diffraction. All deposited films were X-ray amorphous. No significant effect of the target composition on the optical properties of coatings was observed. However, the residual atmosphere is shown to contribute to the oxidation of growing films.  相似文献   

15.
The effects of deposition parameters on the deposition rate, microstructure, and composition of Ge1−xCx thin films prepared by plasma enhanced chemical vapor deposition were studied and the films' infrared optical properties were investigated. The results show that the carbon content of these films increases as the precursor gas flow ratio of CH4:GeH4 increases, while the infrared refractive index of these films decreases from 4 to 2. The deposition rate increases with the radio-frequency power and reaches a constant value when the power goes above 60 W. Ge1−xCx/diamond-like carbon infrared antireflection coatings were prepared, and the transmittance of the coatings in the band of 8 to 14 μm was 88%, which is superior to that of Zinc Sulfide substrate by 14%.  相似文献   

16.
Compositionally graded (Ba1−xSrx)TiO3 (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO2/Si and Ru/SiO2/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO2 is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. The enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO2 that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode.  相似文献   

17.
In this report, we have studied the compositional dependence of structural, optical and electrical properties of polycrystalline In x Ga1?x N thin films grown by modified activated reactive evaporation. The growth was monitored by optical emission spectroscopy. The thickness of the films was in the range ~600–800 nm. The phase, crystallinity and composition of the films were determined by X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The surface morphology was studied by atomic force microscopy. The band gaps of these films obtained from transmittance and photoluminescence measurements were found to vary from 1.88 to 3.22 eV. All the films show n-type conductivity. The carrier concentration was found to be decreasing with increase in gallium incorporation which is in good agreement with the free carrier absorption observed in transmittance spectra.  相似文献   

18.
Ba0.6Sr0.4TiO3 (BST) and 0.06Nd(Zn1/2Ti1/2)O3–0.94Ba x Sr1?x TiO3 (NZT–BST) thin films with x = 0.6, 0.7, 0.75, and 0.8 were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method. The structures, surface morphology, dielectric, and ferroelectric properties, and thermal stability of BST and NZT–BST thin films were investigated as a function of NZT and Ba content. It was found that introducing NZT into BST decreased significantly dielectric loss, however, along with the tunability. On this basis, increasing Ba/Sr in NZT–BST thin films led to the simultaneous increase of dielectric constant and tunability of thin films. As a result, optimized dielectric and tunable properties were obtained for 0.06Nd(Zn1/2Ti1/2)O3–0.94Ba0.7Sr0.3TiO3 thin film with the highest FOM value of 43.22. It awakens us that, for reducing dielectric loss, introducing a certain amount of low permittivity oxides or non-ferroelectrics like NZT into weak ferroelectric perovskite tunable materials, not into paraelectric perovskite tunable materials, may obtain more excellent dielectric and tunable performances.  相似文献   

19.
This work presents the development of n-type and p-type gas-sensitive materials from NiOx doped TiO2 thin films prepared by ion-assisted electron-beam evaporation. TiO2 gas-sensing layers have been deposited over a wide range of NiOx content (0-10 wt.%). The material analysis by atomic force microscopy, X-ray photoemission spectroscopy, and X-ray diffraction suggests that NiOx doping does not significantly affect surface morphology and Ni element may be a substitutional dopant of the TiO2 host material. Electrical characterization shows that NiOx content as high as 10% wt. is needed to invert the n-type conductivity of TiO2 into p-type conductivity. There are notable gas-sensing response differences between n-type and p-type NiOx doped TiO2 thin film. The responses toward all tested reducing gases tend to increase with operating temperature for the n-type TiO2 films while the response decreases with temperature for p-type TiO2 film. In addition, the p-type NiOx doping results in the significant response enhancement toward tested reducing gases such as acetone and ethanol at low operating temperature of 300 °C.  相似文献   

20.
We investigated the variations in the structure and optical properties of TiO2 films produced by reactive d.c. plasmatron sputtering with the most important deposition parameters.Over a wide range, the phase composition (ratio of rutile to anatase) and the grain size of the TiO2 films can be influenced in a controlled manner by variations in the substrate temperature and the oxygen partial pressure.Because of their high refractive index and low light-scattering losses, plasmatron-sputtered TiO2 films are of great interest in the field of optical interference coatings, e.g. for dielectric multilayer stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号