共查询到20条相似文献,搜索用时 15 毫秒
1.
现有视角级情感分析方法大多数利用视角词信息从句子中提取特征,不能同时利用视角和视角词信息,导致模型性能较低,为此文中提出基于辅助记忆循环神经网络的视角级情感分析方法.首先通过深度双向长短期记忆网络和单词的位置信息构建位置权重记忆,利用注意力机制结合视角词建立视角记忆.再联合位置权重记忆和视角记忆输入多层门循环单元,得到视角情感特征.最后由归一化函数识别情感极性.实验表明,相对基准实验,文中方法在3个公开数据集上的效果更好,该方法是有效的. 相似文献
2.
Firefighters are often exposed to extensive wayfinding information in various formats owing to the increasing complexity of the built environment. Because of the individual differences in processing assorted types of information, a personalized cognition-driven intelligent system is necessary to reduce the cognitive load and improve the performance in the wayfinding tasks. However, the mixed and multi-dimensional information during the wayfinding tasks bring severe challenges to intelligent systems in detecting and nowcasting the attention of users. In this research, a virtual wayfinding experiment is designed to simulate the human response when subjects are memorizing or recalling different wayfinding information. Convolutional neural networks (CNNs) are designed for automated attention detection based on the power spectrum density of electroencephalography (EEG) data collected during the experiment. The performance of the personalized model and the generalized model are compared and the result shows a personalized CNN is a powerful classifier in detecting the attention of users with high accuracy and efficiency. The study thus will serve a foundation to support the future development of personalized cognition-driven intelligent systems. 相似文献
3.
现有的视角级情感分析方法难以解决单词在不同语境下“一词多义”问题,因此性能受限.针对上述问题,文中提出基于知识图谱与循环注意力网络的视角级情感分析方法.首先,利用动态注意力机制,结合双向长短时记忆网络的文本表示和知识图谱中的同义词信息,获得知识感知状态向量.再联合位置信息构造记忆内容,并输入多层门限循环单元,计算视角词情感特征,进行视角级文本情感分类.在3个公开数据集上的实验表明,文中方法分类效果较优 相似文献
4.
目标检测是计算机视觉领域中的一个研究热点。近年来,深度学习中的卷积神经网络在目标检测任务上表现突出。文中综述了深度学习在目标检测技术中的研究进展。首先,介绍了目标检测的两种方法和常用数据集,并分析了基于深度学习的方法在目标检测任务上所具有的优势。其次,根据深度学习的目标检测方法的发展过程,介绍了该方法所使用的经典卷积神经网络模型,并分析了各网络模型的特点。然后,从获取特征的能力、检测的速度及所使用的关键技术等方面进行了分析和总结。最后,根据基于深度学习的目标检测方法中存在的困难和挑战,对未来的发展趋势做了思考和展望。 相似文献
5.
6.
P. C. D. Kalaivaani;K. Sathyarajasekaran;N. Krishnamoorthy;T. Kumaravel; 《Computational Intelligence》2024,40(5):e12698
In this article, an intensive sentiment analysis approach termed Hierarchical attention-convolutional neural network (HAN-CNN) has been proposed using product reviews. Firstly, the input product review is subjected to Bidirectional Encoder Representation from Transformers (BERT) tokenization, where the input data of each sentence are partitioned into little bits of words. Thereafter, Aspect Term Extraction (ATE) is carried out and feature extraction is completed utilizing some features. Finally, sentiment analysis is accomplished by the developed HAN-CNN, which is formed by combining a Hierarchical Attention Network (HAN) and a Convolutional Neural Network (CNN). Moreover, the proposed HAN-CNN achieved a greater performance with maximum accuracy, recall and F1-Score of 91.70%, 90.60% and 91.20%, respectively. 相似文献
7.
8.
评价对象抽取是对象级情感分析的关键任务之一,评价对象抽取结果会直接影响对象级情感分类的准确率.在评价对象抽取任务中,借助手工特征加强模型性能的方式既消耗时间又耗费人力.针对数据规模小、特征信息不充分等问题,提出一种基于交互特征表示的评价对象抽取模型(aspect extraction model based on interactive feature representation, AEMIFR).相比其他模型,AEMIFR模型结合字符级嵌入与单词嵌入,捕获单词的语义特征、字符的形态特征以及字符与词语之间的内在联系.而且,AEMIFR模型获取文本的局部特征表示和上下文依赖特征表示,并学习2种特征表示之间的交互关系,增强2种特征之间的相似特征的重要性,减少无用特征对模型的消极影响,以及学习更高质量的特征表示.最后在SemEval 2014,SemEval 2015,SemEval 2016中的数据集L-14,R-14,R-15,R-16上进行实验,取得具有竞争力的效果. 相似文献
9.
万晓丹 《计算机应用与软件》2021,38(1):192-196
在目标检测方法中,通过使用具有不同遮挡程度的数据集进行训练,能够提升目标检测算法对遮挡的不变性,但现实生活中的数据集往往存在长尾效应。因此提出一种基于对抗网络与卷积神经网络的目标检测方法。通过对抗网络在输入数据上进行计算得到不同遮挡程度的样本,使用Faster RCNN算法进行训练提升遮挡不变性,以此提高算法检测精度。实验结果表明,该方法与Faster RCNN相比,在VOC 2007数据集上平均精度提升了2.2个百分点,在VOC 2007和VOC 2012联合数据集上平均精度提升了1.3个百分点。 相似文献
10.
11.
基于神经网络的入侵检测系统 总被引:8,自引:0,他引:8
文章在对现有入侵检测系统所存在不足进行分析的基础上,提出了一个基于神经网络技术的网络入侵检测系统模型,运用神经网络所特有的自学习、自组织能力,弥补现有入侵检测系统所存在的不足。 相似文献
12.
13.
针对视觉安防系统在边缘计算平台部署火焰检测模型时面临的精度与实时性难以平衡的问题,提出一种渐进自适应特征融合的轻量化火焰检测算法。首先,设计轻量级稀疏卷积算子降低模型计算复杂度与内存访问开销。其次,针对分组卷积的通道间信息交互缺陷,基于残差思想构建长距离上下文特征增强的轻量级特征提取组件。为解决深度骨干网络中特征丢失及背景干扰问题,创新性地提出基于高频增强的轻量级特征强化机制,优化空间域和通道域参数,缓解背景干扰问题。在此基础上,建立特征增强-渐进自适应特征融合框架,促进不同尺度特征图充分融合,提高特征图利用率,增强对多尺度目标的识别效果。实验结果表明,所提方法在实时推理速度最高达到27.1 FPS的同时,参数量降低至2.1×106,较基准模型减少69.5%,并达到83.4%的mAP@0.5检测精度,显著优于现有主流方法。 相似文献
14.
Current fault detection methods based on deep neural networks only consider process information and ignore quality indicators. In order to obtain features representing both process variables and quality indicators efficiently, this paper designs teacher and supervise dual stacked auto-encoder (TSSAE) for quality-relevant fault detection in industrial process which separates the feature extraction and model construction. To separate the feature extraction and model construction, a mixing stacked auto-encoder which consists of a nonlinear encoder and a linear decoder is designed to extract features of process variables and quality indicators. Another encoder is supervised by the extracted features and further predict the process variables and quality indicators only from process variables. Then quality-relevant, quality-irrelevant and residual subspaces are constructed in a linear way and fault detection is implemented in these subspaces based on Euclidean distance and kernel density estimation. Finally, the effectiveness of TSSAE is evaluated by a numerical example and the Tennessee-Eastman process. 相似文献
15.
为了提高卷积神经网络对非线性特征以及复杂图像隐含的抽象特征提取能力,提出优化卷积神经网络结构的人体行为识别方法.通过优化卷积神经网络模型,构建嵌套Maxout多层感知器层的网络结构,增强卷积神经网络的卷积层对前景目标特征提取能力.通过嵌套Maxout多层感知器层网络结构可以线性地组合特征图并选择最有效特征信息,获取的特... 相似文献
16.
The usage of social media, forums, and e-commerce websites have been widely increased. Feedback from customers has a big impact on the final product. A service provider, merchant, or manufacturer need all the information, even if it is just a comment or a review about a service or a product. So, it is vital to look at input from users, and therefore sentiment analysis has received a lot of interest. Sentiment analysis is a method for identifying and analyzing text in order to determine the features, qualities, and viewpoints of particular user. Extracting user aspects is the main part of this process, and it is used to group the user aspects. In recent years, convolutional neural network (CNN) models have gained popularity in natural language processing. Thus, this research proposes a novel hybrid CNN model by concatenating the bidirectional long short-term memory and CNN models to process the data sequentially by learning their high-level features. The concatenated method minimizes the loss of critical information. Benchmark product reviews and hotel review datasets are employed in the experiments, and accuracies of 93.6% for the product review dataset and 92.7% for the hotel review dataset are achieved by the proposed hybrid model when compared to state-of-the-art techniques. 相似文献
17.
18.
《Displays》2023
In recent years, single image super-resolution (SISR) models based on convolutional neural networks (CNN) have made significant progress and have gradually become the mainstream method. However, they still suffer from high computational costs, heavy memory consumption, and a limited receptive field. Although Vision Transformer has a stronger modeling capability and larger receptive field, it also incurs high computing power consumption and memory occupation. To address these issues, we propose a hybrid network of Transformer and CNN with cascaded feature distillation blocks for efficient image super-resolution (TCFDN), which can take advantage of both local information and long-term interactions while being flexible enough. Concretely, TCFDN consists of cascaded Transformer-CNN feature distillation blocks (TCFDB) and an upsampling module. The feature distillation pipeline of TCFDB can help our model gradually learn refined features with better representation ability while remaining lightweight. Besides, we also designed an enhanced Swin Transformer layer (ESTL) by replacing the multi-layer perceptron (MLP) in the standard Transformer with a convolutional feed-forward layer (CFF), which is more suitable for SR tasks. Then, the enhanced spatial attention embedded in TCFDB can boost SR performance further. Moreover, we observe that using a more advanced loss function, i.e., the contrastive loss, can also bring a PSNR gain of 0.01 dB–0.03 dB on public benchmarks. Extensive experiments demonstrate that TCFDN outperforms the state-of-the-art methods in terms of a better trade-off between performance and model size. Under the 4X SR task on the public benchmark Urban100, our TCFDN outperforms the second-best model by 0.37 dB in terms of PSNR. Compared with other state-of-the-art methods, the total number of parameters in TCFDN can be reduced by up to 32 % while maintaining competitive performance. 相似文献
19.
作为未来5G通信的核心技术之一,大规模多输入多输出(multiple-input multiple-output,MIMO)技术获得了广泛的研究。但是,"大规模"带来显著性能增益的同时,也给接收机设计带来了挑战,尤其是考虑到资源和成本限制,基站天线在满足性能需求的同时,需要尽可能少。论文首先讨论了MIMO情景下的传统检测算法,如最大似然(maximum likelihood, ML)检测算法、迫零(zero-forcing, ZF)检测算法及线性最小均方误差(linear minimum mean square error, LMMSE)检测算法等。仿真结果表明最优的ML算法的复杂度随着用户数指数增加。在接收天线数不是充分多时,次优的ZF和LMMSE算法都会有显著的性能损失。针对这一问题,讨论了基于深度学习框架的解决方案,包括目前已有的LAMP(learned approximate message passing)检测算法和神经网络DetNet算法;基于全连接网络结构做了初步探索。经过对它们的仿真比较,发现基于深度神经网络的MIMO检测算法,确实可以提升传统检测算法的性能;但对神经网络系数的优化,可能会导致较高的训练复杂度,论文讨论了可能的解决方法。 相似文献
20.
用户评论往往同时包含多个方面、多种情感,如何正确判断一条评论中不同方面的情感倾向性是方面情感分析的难点.文中提出基于词嵌入与记忆网络的方面情感分类.通过在记忆网络的不同模块引入方面词向量,加强方面词的语义信息,指导注意力机制捕捉方面相关的上下文信息,提升方面情感分类效果.在SemEval 2014任务4的短文本英文评论数据集和文中标注的长文本中文新闻数据集上实验表明,文中方法分类效果较好,在记忆网络框架下引入方面词嵌入信息是有效的. 相似文献