首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)?1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis–Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.  相似文献   

2.
The thermal conductivity of polymer composites containing nanofillers such as GNP (graphene nanoplatelet) and carbon black (CB) was investigated using experimental and theoretical approaches. We developed a fabrication method that allows different shapes and sizes of nanofillers to be highly dispersed in polymer resin. When the bulk and in-plane thermal conductivities of the fabricated composites were measured, they were found to increase rapidly as the GNP filler content increased. The in-plane thermal conductivity of composites with 20 wt.% GNP filler was found to reach a maximum value of 1.98 W/m K. The measured thermal conductivities were compared with the calculated values based on a micromechanics model where the waviness of nanofillers could be taken into account. The waviness of the incorporated GNP filler is an important physical factor that determines the thermal conductivity of composites and must be taken into consideration in theoretical calculations.  相似文献   

3.
The low through-thickness thermal conductivity limits heat dissipation from continuous carbon fiber polymer-matrix composites. This conductivity is increased by up to 60% by raising the curing pressure from 0.1 to 2.0 MPa and up to 33% by incorporation of a filler (?1.5 vol.%) at the interlaminar interface. The 7-μm-diameter 7-W/m K-thermal-conductivity continuous fiber volume fraction is increased by the curing pressure increase, but is essentially unaffected by filler incorporation. The thermal resistivity is dominated by the lamina resistivity (which is contributed substantially by the intralaminar fiber-fiber interfacial resistivity), with the interlaminar interface thermal resistivity being unexpectedly negligible. The lamina resistivity and intralaminar fiber-fiber interfacial resistivity are decreased by up to 56% by raising the curing pressure and up to 36% by filler incorporation. The curing pressure increase does not affect the effectiveness of 1-mm-long 10-μm-diameter 900-1000-W/m K-thermal-conductivity K-1100 carbon fiber or single-walled carbon nanotube (SWCNT) as fillers for enhancing the conductivity, but hinders the effectiveness of carbon black (CB, low-cost), which is less effective than K-1100 or SWCNT at the higher curing pressure, but is almost as effective as K-1100 and SWCNT at the lower curing pressure. The effectiveness for enhancing the flexural modulus/strength/ductility decreases in the order: SWCNT, CB, K-1100.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNTs) were first treated by a 3:1 (v/v) mixture of concentrated H2SO4/HNO3, and then triethylenetetramine (TETA) grafting was carried out. Nano-sized silicon carbide particles (SiCnp) were modified by the silane coupling agent. Epoxy nanocomposites filled with hybrid filler system containing TETA-functionalized MWCNTs and silane-modified SiCnp were prepared. The investigation on the thermal conductivity of epoxy nanocomposites filled with single filler system and hybrid filler system was performed. Chemical surface treatment is conducive to the enhancement of thermal conductivity of epoxy composites. The thermal conductivity of epoxy composites with hybrid filler system is higher than that of epoxy composites with any single filler system (functionalized MWCNTs or modified SiCnp), which is due to the effective combination of MWCNT-to-MWCNT and SiCnp-to-SiCnp conductive networks. Hybrid filler system could provide synergistic effect and cost reduction simultaneously.  相似文献   

5.
高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al_2O_3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al_2O_3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。  相似文献   

6.
The effects of hybrid conductive fillers on the electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of polyamide 6 (PA6)/conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as the main filler and multi-walled carbon nanotube (MWCNT), nickel-coated graphite, carbon black, and titanium dioxide (TiO2) were used as the second fillers in this study. From the results of morphological studies of the PA6/NCCF/second filler composites, NCCF easily formed an electrical pathway since it has a high aspect ratio and random orientation, and the second fillers seemed to disperse evenly in the PA6 matrix. The electrical conductivity and EMI SE of the PA6/NCCF composites were increased with the increase of NCCF content. Among the second fillers used in this study, TiO2 appeared to be the most effective second filler with regard to increasing the EMI SE and electrical conductivity of the PA6/NCCF composite. This was probably because TiO2 has a high dielectric constant with dominant dipolar polarization, consequently leading to greater shielding effectiveness due to the absorption of electromagnetic waves. From the above results of EMI SE and electrical conductivity, it was suggested that the TiO2 produced a synergistic effect when it was hybridized with the NCCF of the PA6/NCCF/TiO2 composites.  相似文献   

7.
The hybrid filler of hollow glass microspheres (HGM) and nitride particles was filled into low-density polyethylene (LDPE) matrix via powder mixing and then hot pressing technology to obtain the composites with higher thermal conductivity as well as lower dielectric constant (Dk) and loss (Df). The effects of surface modification of nitride particles and HGMs as well as volume ratio between them on the thermal conductivity and dielectric properties at 1 MHz of the composites were first investigated. The results indicate that the surface modification of the filler has a beneficial effect on thermal conductivity and dielectric properties of the composites due to the good interfacial adhesion between the filler and matrix. An optimal volume ratio of nitride particles to HGMs of 1:1 is determined on the basis of overall performance of the composites. The thermal conductivity as well as dielectric properties at 1 MHz and microwave frequency of the composites made from surface-modified fillers with the optimal nitride to HGM volume ratio were investigated as a function of the total volume fraction of hybrid filler. It is found that the thermal conductivity increases with filler volume fraction, and it is mainly related to the type of nitride particle other than HGM. The Dk values at 1 MHz and microwave frequency show an increasing trend with filler volume fraction and depend largely on the types of both nitride particles and HGMs. The Df values at 1 MHz or quality factor (Q × f) at microwave frequency show an increasing or decreasing trend with filler volume fraction and also depend on the types of both nitride particle and HGM. Finally, optimal type of HGM and nitride particles as well as corresponding thermal conductivity and dielectric properties is obtained. SEM observations show that the hybrid filler particles are agglomerated around the LDPE matrix particles, and within the agglomerates the smaller-sized nitride particles in the hybrid filler can easily form thermally conductive networks to make the composites with high thermal conductivity. At the same time, the increase of the value Dk of the composites is restricted due to the presence of HGMs.  相似文献   

8.
Advanced elastomer nano-composites based on CNT-hybrid filler systems   总被引:1,自引:0,他引:1  
Different techniques to disperse multiwalled carbon nanotubes (CNT) in elastomers using an internal mixer are applied and physical properties of the composites are evaluated: stress–strain behavior, dynamic-mechanical, thermal diffusivity, dielectric and fracture mechanical properties. The electrical percolation threshold is found to decrease by using ethanol as dispersion agent, compared to “dry” mixing, correlating with improved optical dispersion. The effect of nanoscopic gaps between adjacent CNTs on the electrical and thermal conductivity of the composites and the missing percolation behavior of the thermal conductivity are discussed. We have found some technically promising synergetic effects of the hybrid filler systems. For all systems one observes significantly steeper stress–strain curves by addition of 1.6 vol.% CNT to the systems with conventional fillers. In natural rubber the fatigue crack propagation resistance, tensile strength and electrical conductivity is found to be improved also for dry mixed CNT-silica hybrid systems.  相似文献   

9.
为在较低的导热填料含量下提高环氧树脂(EP)的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-EP) (GNP/(PEK-C-EP))复合材料。基于接触角测量计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对GNP/(PEK-C-EP)复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中,形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。当GNP含量为1wt%时,GNP/EP复合材料导热率最高达0.375 W(m·K)?1。当GNP含量为0.5wt%时,GNP/(PEK-C-EP)复合材料导热率最高达0.371 W(m·K)?1,较GNP含量为0.5wt%的GNP/EP复合材料热导率高48%,与GNP含量为1wt%的GNP/EP复合材料的热导率基本相同。表明GNP/(PEK-C-EP)复合材料的填料量减少了50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)复合材料的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。   相似文献   

10.
The distribution of functional filler is known to have significant influence on various functionalities, yet, not been systematically investigated. Herein, we use a blends system based on PA12/PA6 containing SiC and low-temperature expandable graphite (LTEG) to study it. The effect of filler distribution in such blends on various functionalities including: thermal conductivity, electrical conductivity, and electromagnetic interference (EMI) shielding ability, has been systematically studied. Further study on altering filler distribution with polished PA6-LTEG and PA6-LTEG in different sizes reveals that, polished particle surface results in reduced electrical and thermal conductivity; and smaller particle size leads to enhanced electrical conductivity, thermal conductivity and EMI shielding ability. Finally, theoretical approach on thermal conductivity demonstrates that the system illustrates very effective contribution in thermal conductivity from large PA6-LTEG “filler” comparing to much smaller traditional fillers. Such study could provide a guideline for the processing of functional polymer composites.  相似文献   

11.
The heat exchange and friction in pumping air through channels containing a porous filler (PF) consisting of pellets or wire pieces with different dimensions and thermal conductivity values are investigated in a wide range of porosities.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 2, pp. 187–194, August, 1986.  相似文献   

12.
We found that the thermal conductivity of polymer composites was synergistically improved by the simultaneous incorporation of graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) fillers into the polycarbonate matrix. The bulk thermal conductivity of composites with 20 wt% GNP filler was found to reach a maximum value of 1.13 W/m K and this thermal conductivity was synergistically enhanced to reach a maximum value of 1.39 W/m K as the relative proportion of MWCNT content was increased but the relative proportion of GNP content was decreased. The synergistic effect was theoretically estimated based on a modified micromechanics model where the different shapes of the nanofillers in the composite system could be taken into account. The waviness of the incorporated GNP and MWCNT fillers was found to be one of the most important physical factors determining the thermal conductivity of the composites and must be taken into consideration in theoretical calculations.  相似文献   

13.
以尼龙6(PA6)为基体,膨胀石墨(EG)和碳纤维(CF)作为导热填料,采用熔融共混法制备了EG/PA6、CF/PA6和CF-EG/PA6导热复合材料。重点研究当固定导热填料(CF和EG)填充量为40wt%时,CF与EG不同的填充比例对CF与EG的接触方式及CF-EG/PA6复合材料的导热性和力学性能的影响。结果表明,相比单一CF填充,EG的加入有利于CF-EG/PA6复合材料热导率的增加;CF:EG质量比是25:15时的EG-CF/PA6三元复合材料,热导率可以达到2.554 W/(m·K),是PA6的8倍,拉伸强度提高了125.34%,弯曲强度提高了119.8%,同时具有优异的耐热性。SEM结果表明,纤维状CF与蠕虫状EG片层在适当的填充比例下可以形成"面接触"的三维网络结构,这种三维网络结构不仅显著增大EG-CF/PA6复合材料的热导率,而且明显提高了其力学性能和耐热性能。为研制填充型导热高分子材料提供了一条新思路。   相似文献   

14.
采用熔融共混法制备BN纤维-石墨烯微片/聚丙烯(BN纤维-GNP/PP)高导热绝缘复合材料,结合有限元模拟、SEM、XRD、导热导电测试结果,探究了BN纤维含量和长度对BN纤维-GNP/PP复合材料导热绝缘性能的影响。结果表明:BN纤维-GNP/PP复合材料中BN纤维含量和长度的增加可增大GNP分布范围,增大BN纤维与GNP的接触概率;在GNP含量为7wt%、100 μm BN纤维含量为20wt%时BN纤维-GNP/PP复合材料的热导率较PP提高了4.2倍,同时电绝缘性略有提高。模拟结果表明,高含量100 μm BN纤维的加入使BN纤维-GNP/PP复合材料导热网络的构建趋于完整,局部热通量较低的区域减少。片状GNP与纤维状BN二相填料的"协同效应",使GNP和BN纤维分别作为"岛"和"桥"形成了一种特殊的"双网络"结构,BN纤维作为高导热"桥"阻隔了相邻GNP间导电通路的形成,从而提高了BN纤维-GNP/PP复合材料的导热绝缘性能。   相似文献   

15.
This study investigates the thermal conductivity of epoxy composites containing two hybrid fillers which are multi-walled carbon nanotubes (MWCNTs) and aluminum nitride (AlN). To form a covalent bonds between the fillers and the epoxy resin, poly(glycidyl methacrylate) (PGMA) were grafted onto the surface of nano-sized MWCNTs via free radical polymerization and micro-sized AlN was modified by zirconate coupling agent. Results show that functionalized fillers improve thermal conductivity of epoxy composites, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergetic effect on heat conductive networks. The thermal conductivity of epoxy composites containing 25 vol.% modified AlN and 1 vol.% functionalized MWCNTs is 1.21 W/mK, comparable to that of epoxy composites containing 50 vol.% untreated AlN (1.25 W/mK), which can reduce the half quantity of AlN filler used.  相似文献   

16.
In this work, 3D graphene structures constructed by graphene foam (GF) were introduced into polyamide-6 (PA6) matrix for the purpose of enhancing the thermal-conductive and anti-dripping properties of PA6 composites. The GF were prepared by one-step hydrothermal method. The PA6 composites were synthesized by in-situ thermal polycondensation method to realize PA6 chains covalently grafted onto the graphene sheets. The 3D interconnected graphene structure favored the formation of the consecutive thermal conductive paths or networks even at relatively low graphene loadings. As a result, the thermal conductivity was improved by 300% to 0.847 W·m−1·K−1 of PA6 composites at 2.0 wt% graphene loading from 0.210 W·m−1·K−1 of pure PA6 matrix. The presence of self-supported 3D structure alone with the covalently-grafted PA6 chains endowed the PA6 composites good anti-dripping properties.  相似文献   

17.
高导热低填量聚合物基复合材料在电子封装和大功率电子设备等领域有着巨大需求。通常高导热聚合物是通过在高分子基体中均匀分散高含量的导热填料来实现的,然而较高填料含量会极大地恶化复合材料力学性能和提升材料经济成本,因此高填量复合材料很难满足当前工业应用上的需求。综述了近年来高导热低填量聚合物基复合材料制备研究进展,简要介绍了导热机制和影响低填量聚合物基复合材料导热性能的主要因素,按照不同填料类型介绍了一些热导率高于1.0 W/(m·K)且填充量低于10vol%的高导热低填量聚合物基复合材料的制备方法和研究进展,展望了高导热低填量聚合物基复合材料的发展方向。  相似文献   

18.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

19.
In this work, carbon composite bipolar plates consisting of synthetic graphite and milled carbon fibers as a conductive filler and epoxy as a polymer matrix developed using compression molding is described. The highest electrical conductivity obtained from the described material is 69.8 S/cm for the in-plane conductivity and 50.34 S/cm for the through-plane conductivity for the composite containing 2 wt.% carbon fiber (CF) with 80 wt.% filler loading. This value is 30% greater than the electrical conductivity of a typical graphite/epoxy composite with 80 wt.% filler loading, which is 53 S/cm for the in-plane conductivity and 40 S/cm for the through-plane conductivity. The flexural strength is increased to 36.28 MPa compared to a single filler system, which is approximately 25.22 MPa. This study also found that the General Effective Media (GEM) model was able to predict the in-plane and through-plane electrical conductivities for single filler and multiple filler composites.  相似文献   

20.
Graphite nanoplatelet (GNP)/rubbery epoxy composites were fabricated by mechanical mixer (MM) and dual asymmetric centrifuge speed mixer (SM). The properties of the GNP/rubbery epoxy were compared with GNP/glassy epoxy composites. The thermal conductivity of GNP/rubbery epoxy composite (25 wt.% GNP, particle size 15 μm) reached 2.35 W m−1 K−1 compared to 0.1795 W m−1 K−1 for rubbery epoxy. Compared with GNP/rubbery epoxy composite, at 20 wt.%, GNP/glassy epoxy composite has a slightly lower thermal conductivity but an electrical conductivity that is 3 orders of magnitude higher. The viscosity of rubbery epoxy is 4 times lower than that of glassy epoxy and thus allows higher loading. The thermal and electrical conductivities of composites produced by MM are slightly higher than those produced by SM due to greater shearing of GNPs in MM, which results in better dispersed GNPs. Compression and hardness testing showed that GNPs increase the compressive strength of rubbery epoxy ∼2 times without significantly affecting the compressive strain and hardness. The GNP/glassy epoxy composites are 40 times stiffer than the GNP/rubbery epoxy composites. GNP/rubbery epoxy composites with their high thermal conductivity, low electrical conductivity, low viscosity before curing and high conformability are promising thermal interface materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号