共查询到18条相似文献,搜索用时 78 毫秒
1.
针对传统蚁群算法在路径规划中存在收敛速度和寻优能力不平衡,算法易陷入局部最优等问题,提出一种自适应改进蚁群算法。为了提高算法收敛速度,在栅格环境下,根据最优路径的特点以及实际环境地图的基本参数,对初始信息素进行差异化分配;为了提高蚂蚁搜索效率,在状态转移概率中引入转角启发信息并对路径启发信息进行改进;重新制定信息素更新策略,设定迭代阈值,调整信息素挥发系数和信息素浓度,使算法在迭代后期依然具有较强的搜索最优解能力;采用分段三阶贝塞尔曲线对最优路径进行平滑处理以满足机器人实际运动要求。通过实验仿真与其他算法进行对比分析,验证了改进算法的可行性、有效性和优越性。 相似文献
2.
针对传统蚁群算法收敛速度较慢,易陷入局部最优,初始信息素匮乏等缺点,提出一种改进的蚁群算法.初始阶段在起点与终点的连线上额外增加信息素,提高算法的收敛速度;对原有启发函数中的启发因子进行改进,提高算法的寻优效率;改进了信息素浓度的挥发公式,使其服从高斯分布,使信息素挥发动态化.仿真结果表明:改进后的蚁群算法收敛速度更快... 相似文献
3.
4.
为了克服传统蚁群算法容易陷入局部最优的问题,提高环境适应能力和收敛速度,提出了一种基于自适应阈值的蚁群算法.在优化过程早期,通过阈值对蚂蚁寻优过程进行干预避免其陷入局部最优解.随着迭代次数的增加,阈值对蚂蚁寻优过程的影响不断减小,直至完全由信息素和启发信息来指导蚂蚁寻优.仿真实验验证了优化算法的可行性和有效性.与现有蚁群算法进行比较,实验结果表明:在不同的环境下,文中提出的算法都能快速的规划出一条较优的路径,并且收敛速度和环境适应能力令人满意. 相似文献
5.
针对蚁群算法易陷入路径死锁的缺点,提出了一种复杂环境下移动机器人路径规划的改进蚁群算法。对机器人环境建立栅格模型,在传统转移规则中引入指向上一节点的数组,增强了算法的逃逸能力;在信息素更新中减去最差蚂蚁释放的信息量,有利于种群的进化。仿真分析了主要参数对算法性能的影响,实验结果表明,该算法在复杂地图中搜索到的路径优于传统算法。 相似文献
6.
针对蚁群算法在机器人路径规划过程中出现的收敛速度慢的缺陷,提出了基于改进蚁群算法规划机器人全局路径,在栅格地图中划定优选区域,并建立新的初始信息素浓度设置模型,对各点初始信息素浓度进行差异化设置,避免寻优的盲目性,提高了算法的收敛速度。实验结果表明,改进后的蚁群算法的收敛速度明显加快,优于传统算法,表明了该算法的有效性。 相似文献
7.
8.
改进蚁群算法在移动机器人路径规划上的应用 总被引:1,自引:0,他引:1
为解决蚁群算法在路径规划中存在收敛速度慢、搜索效率低的问题,提出一种改进的蚁群优化算法。构建不等分配初始信息素以避免算法初始搜索的盲目性,使用伪随机状态转移规则选择路径,根据当前最优解和迭代次数计算状态转移概率,自适应地调整确定选择和随机选择的比例,引入最优解和最差解改进全局信息素更新方法,利用动态惩罚方法解决死锁问题。实验结果表明,改进的蚁群算法在全局最优搜索能力和收敛速度上得到了很大提高,失去的蚂蚁数量较其它算法更少,验证了改进蚁群算法的有效性和优越性。 相似文献
9.
基于蚁群算法的机器人路径规划 总被引:16,自引:2,他引:16
移动机器人路径规划是机器人学的一个重要研究领域,栅格法模型是其中一类实时性很强的路径规划模型。该文引入蚁群算法的思想,以点离目标点距离、该点的访问次数和移动方向信息素为启发式因子,建立了一种新型的优化算法。新算法不仅能够较好地对已有算例进行求解,而且对于随机设计的新例子求解效果良好。 相似文献
10.
针对移动机器人提出了基于改进蚁群算法的平滑路径规划方法。为了克服蚁群算 法解决路径规划问题时存在的收敛速度慢的缺点,对启发因子的矩阵初始值及更新方式进行了 改进,启发因子改进后的结果与之前相比,平均路径长度减少了 17.6%,平均收敛代数减少了 93.1%;对于栅格环境下存在障碍物时机器人累计转弯角度大的问题,提出了控制点转移策略, 在上一步改进的基础上,通过对控制路径走向的栅格中心点向栅格角顶点的转移,实现了路径 规划的平滑改进。路径规划仿真结果表明,与平滑改进前相比,平滑改进后机器人的平均路径 长度减少了 4.28%,累计转弯角度减少了 52.58%。 相似文献
11.
12.
养殖场巡视机器人路径规划是实现规模化养殖场智能监控的关键所在,针对机器人巡视过程中寻找最优充电路线的问题,提出一种改进的蚁群优化算法IACO。利用工作环境的全局信息建立目标吸引函数,提高蚁群选择最佳路径到达目标点的概率,缩短了算法的迭代时间。通过加入额外的信息素更新项和改进信息素挥发系数增强算法的全局搜索能力,避免算法搜索后期出现过早收敛而陷入局部最优。在简单和复杂环境中的仿真实验结果表明,与经典蚁群优化算法相比,该算法具有更快的收敛速度和良好的稳定性,可快速收敛到最佳路径。 相似文献
13.
以Dijkstra算法求解移动机器人路径规划(mobile robot path planning,MRPP)问题已得到广泛的应用,但在复杂工况下无法保证求解的正确性和全局最优性.而基于蚁群算法的移动机器人路径规划模型,在一定条件下能可靠地获得全局最优解,但存在求解时间过长的问题.因此,提出一种结合Dijkstra算法和蚁群算法模型两者优势求解MRPP问题的融合优化方法,以实现在短时间内获得全局最优解的目标.首先,应用Dijkstra快速算法在机器人工作环境中粗略寻迹得到最短路径次优解,然后,在次优解路径附近进行工作环境的精确划分;最后,利用蚁群算法在次优解附近精确寻迹,使最终的寻迹结果无限逼近最短路径.仿真结果表明,该融合优化方法既克服了经典蚁群算法求解时间过长的缺点,又能无限逼近全局最优解,寻迹时间较蚁群算法可缩短90%以上. 相似文献
14.
基于改进蚁群算法的机器人路径规划研究 总被引:3,自引:0,他引:3
在二维静态环境下的机器人路径规划中,采用基本蚁群算法寻优存在搜索时间较长、效率较低、容易陷入局部最优等问题。针对这些问题对基本蚁群算法进行改进,改进的蚁群算法使用不同的期望值机制,采用挥发系数自适应方式更新信息激素,并加入拐点参数作为路径的评价标准之一。对这两种算法进行仿真分析,可得改进后的蚁群算法比基本蚁群算法搜索能力更强,算法效率更高,所寻路径更短。结果表明,该改进算法提高了算法效率,抑制了算法陷入局部最优并实现了机器人最优路径搜索,使机器人可以快速地避开障碍物安全到达目标点。 相似文献
15.
16.
17.
针对传统蚁群算法以及双层蚁群算法在路径规划中存在搜索效率低、收敛性较慢以及成本较高的问题,本文提出了变步长蚁群算法。该算法扩大蚁群可移动位置的集合,通过对跳点的选择以达到变步长策略,有效缩短移动机器人路径长度;初始化信息素采用不均匀分布,加强起点至终点直线所涉及到栅格的信息素浓度平行地向外衰减;改进启发式信息矩阵,调整移动机器人当前位置到终点位置的启发函数计算方法。试验结果表明:变步长蚁群算法在路径长度及收敛速度两方面均优于双层蚁群算法及传统蚁群算法,验证了变步长蚁群算法的有效性和优越性,是解决移动机器人路径规划问题的有效算法。 相似文献