首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 60 毫秒
1.
综合考虑能源危机、环境问题、锂资源对锂电池行业发展的约束性,废旧锂电池回收是一项十分必要且有意义的工作。本文综述了废旧磷酸铁锂电池正极材料的回收利用方法,包括化学沉淀法、选择性浸出法、机械化学法、电化学提锂法等有价元素提取技术,以及固相修复再生、水热修复再生、电化学修复再生等修复再生技术,并指出不同回收利用方法的优势与不足;针对现阶段废旧磷酸铁锂电池正极材料回收利用存在的问题提出展望,为后续开展废旧磷酸铁锂电池回收利用的相关研究及工业应用提供参考。  相似文献   

2.
近些年来,随着全球新能源汽车和智能电子产品市场的逐渐扩大,锂离子电池数量急剧增加,从保护生态环境和节约资源的角度来看,开展废旧锂电池的回收再生研究具有极大的社会和经济价值.以三元锂电池为例,介绍了三元锂电池正极失效原因以及传统火法冶金和湿法冶金浸出工艺的回收条件、应用现状和优缺点,综述了废旧三元锂电池湿法冶金浸出后再生和直接再生的研究进展.基于此,特别论述了再生后的三元锂电池正极材料通过离子掺杂和表面包覆改性升级的创新策略.最后,展望了废旧三元锂电池回收再生工艺的发展前景,以期对废旧锂电池回收体系的完善提供一定的参考和建议,形成经济效益好、绿色环保的锂电池生产—回收闭路循环回收体系.  相似文献   

3.
采用碳还原焙烧—水浸法从废旧三元锂离子正极材料中优先选择性提Li,通过热力学分析,结合XRD、ICP等检测手段,研究了焙烧温度、焙烧时间、配碳量对Li浸出率的影响。结果表明,可以通过碳还原焙烧—水浸法优先提取三元锂离子正极材料中的Li,焙砂中Li以Li2CO3形式存在,在焙烧温度750 ℃、焙烧时间1 h,配碳量20%的条件下,Li浸出率达到97.85%,实现了优先选择性提Li。  相似文献   

4.
采用铜冶炼酸性废水浸出废旧三元锂离子电池正极材料,考察了浸出温度、酸性废水中初始H2SO4浓度、搅拌速度对Co浸出率的影响。结果表明,当浸出时间150 min、浸出温度363 K、液固比12.5、还原剂淀粉用量10 g/L、酸性废水中初始H2SO4浓度1.5 mol/L时,正极材料中Co的浸出率可达99.12%。利用未反应收缩核模型分析了还原浸出过程中Co的动力学。结果表明,Co的浸出过程受内扩散和界面化学反应混合控制,表观活化能为23.657 kJ/mol,动力学方程为:■  相似文献   

5.
针对废旧三元正极材料回收过程中工艺流程长、酸碱消耗高、锂直收率低、回收成本较高等问题,提出了助剂焙烧常温水浸联合新工艺,选择性提取废旧三元正极粉料中的锂,实现锂与其他金属(镍、钴、锰)的高效分离。新工艺以试剂A(无机酸)、试剂B(无机酸盐)为助剂,通过低温煅烧转化与常温水浸技术,提高废旧三元正极材料中锂的直收率,研究了煅烧温度、助剂与正极材料质量比、浸出液固比等条件对金属浸出率的影响。结果表明,在煅烧温度600℃、助剂A添加量为正极材料质量的50%、助剂B添加量为正极材料质量的5%、煅烧时间2h、水浸液固比3mL/g的条件下,Li浸出率达95%以上,浸出液中Li+浓度21g/L以上,其他金属(Ni、Co、Mn)含量均小于1mg/L。  相似文献   

6.
复杂废旧混合正极材料存在浸出率较低、成本较高、酸浸液金属分离流程较长等问题。采用硫酸为酸浸剂、H_2O_2为还原剂对废旧混合正极材料进行浸出,采用碳酸盐共沉淀法合成三元NCM622,对其进行结构和形貌分析,以及电化学性能的测试。结果表明,浸出最优条件为:硫酸浓度2.5mol/L、H_2O_2添加量0.6mol/L、搅拌速率400r/min、时间30min、温度80℃,此条件下,Li、Ni、Co、Mn的浸出率分别为98.79%、97.05%、96.45%和96.31%。XRD测试表明,再生NCM622无杂峰,且呈典型的α-NaFeO_2层状结构,SEM显示NMC622颗粒大小均匀、少团聚现象。电化学测试表明,1C倍率下首圈放电比容量为152.87mAh/g,循环100圈后,容量保持率为91.35%。  相似文献   

7.
针对废旧三元动力电池回收工艺流程长,锂回收率低,且大部分企业锂回收仅生产粗制碳酸锂、磷酸锂,产品附加值低的现状,采用浮选-还原焙烧碳化提锂工艺生产电池级碳酸锂.结果 显示,在优化工艺指标和设备参数下,锂回收率大于90%;通过浮选除去大部分负极石墨,可有效地减小浸出设备和压滤设备规格,并缩短后续镍钴锰元素回收工艺流程,减...  相似文献   

8.
以废弃三元锂离子电池正极材料(spent-NCM)为研究对象,葡萄糖(C6H12O6)为焙烧剂,采用焙烧—水浸工艺实现锂的选择性优先浸出。结果表明,在600℃焙烧90 min、C6H12O6与spent-NCM质量比25%、浸出液固比20 mL/g的条件下,spent-NCM中的有价金属元素转变为水溶性的Li2CO3和不溶性的Ni、Co和MnO,焙烧产物经水浸可选择性优先分离Li, Li的浸出率为95.62%。  相似文献   

9.
随着智能电子终端普及与"5G时代"来临,废旧钴酸锂锂离子电池产量已逐年增加.废旧钴酸锂电池中蕴含丰富钴资源,是缓解我国钴供需紧张的重要源头,废旧LiCoO2电池资源化利用具有重大的现实意义.为此,本文介绍近年来废旧钴酸锂电池材料回收利用研究现状,分析废旧钴酸锂电池常用回收利用方法优缺点,主要包括火法回收、湿法回收和材料...  相似文献   

10.
通过低温焦硫酸钾焙烧与盐溶液浸出复合,实现了退役三元锂电池正极材料中锂的选择性回收。系统研究了焙烧温度、焦硫酸钾与正极材料质量比、焙烧时间对锂、钴、镍、锰回收效果的影响和作用机制。结果表明,在焙烧温度350 ℃、正极材料与焦硫酸钾质量比1︰2、焙烧时间60 min的条件下,再经草酸钾水溶液浸出后,锂的回收率达到97.21%,镍的浸出率为2.61%,钴的浸出率为3.1%,锰的浸出率为10.8%。同时,采用XRD、SEM和EDS表征焙烧前后材料的晶体结构、表面形貌以及元素组成变化,阐明了焦硫酸钾焙烧过程中锂、钴、镍、锰的相转化机制。与传统湿法、火法和生物冶金法相比,该回收技术低能耗、应用前景广阔。  相似文献   

11.
针对目前废旧磷酸铁锂处理工艺存在耗能高、污染大等问题,探索了一种废旧磷酸铁锂电池正极材料氯化焙烧工艺。焙烧过程中,以NH4Cl作为氯化剂,实现锂和部分金属物相转型,形成可溶性的氯化盐。探究NH4Cl用量、焙烧温度、焙烧时间、气氛条件等对氯化过程的影响。试验结果表明,废旧磷酸铁锂正极材料经氯化焙烧转型,可实现Fe、Al在氧化性气氛中转化为Fe2O3、FeOCl和AlPO4等难溶物,在水浸过程中原料中的不溶性杂质和难溶的Fe、Al化合物进入渣相,Li部分转化为可溶性物质,从而选择性浸出至溶液。本方案能够选择性从废旧磷酸铁锂电池中提取最有价值的金属锂,实现资源的回收、高效利用。  相似文献   

12.
以磷酸为浸出剂、抗坏血酸为还原剂浸出废旧三元锂离子电池正极材料,分别探究磷酸浓度、抗坏血酸浓度、固液比、反应温度、反应时间对Li、Ni、Co和Mn浸出率的影响。结果表明,在磷酸浓度0.6 mol/L、抗坏血酸浓度0.1 mol/L、固液比20 g/L、反应温度60℃、反应时间60 min的条件下,Li、Ni、Co和Mn的浸出率可分别达到99.65%、97.45%、99.51%和98.89%。采用未反应收缩核模型对浸出动力学数据进行拟合,Li、Ni、Co和Mn的反应活化能分别为38.79、44.63、42.47和41.63 kJ/mol, Li、Ni、Co和Mn在浸出过程受表面化学反应控制,Li最容易浸出,Ni最难浸出。  相似文献   

13.
综合运用XRD、ICP及TOC表征破碎废旧锂离子电池筛分后得到的电极材料成分,并利用TGA、GC-MS对电极材料的碳热还原反应机理进行探究。在无氧焙烧条件下,废旧锂离子电池中的负极材料石墨与正极材料钴酸锂发生反应,得到产物钴与碳酸锂,经湿式磁选分离后,钴以单质形式富集在磁性固体中,钴回收率为95.12%。  相似文献   

14.
锂离子电池具有高能量密度、长寿命、轻量化和环保等诸多优点,是一种现代化、高效能的能量储存技术。锂离子电池正极材料的制备过程中需要匣钵作为容器进行高温烧结处理,匣钵在使用过程中会发生开裂、剥落等失效现象。提升匣钵的耐高温、抗侵蚀、防粘附等性能,可有效增加其使用寿命,极大降低生产成本,保证产品质量。研究选用氧化铝(Al2O3)作为涂层材料,采用等离子热喷涂技术在匣钵(莫来石-堇青石)内表面制备了均匀致密的涂层,并进行物料高温烧结试验,对涂层的防护性能进行了研究与分析。匣钵涂层经过50次烧结试验(950℃、12h)后,无明显剥离、脱落。匣钵涂层在烧结过程中表层形成腐蚀产物层,其余涂层部分仍为致密氧化铝涂层,有效防止了物料对匣钵的腐蚀。其中锂电材料仅微量附着于匣钵涂层的腐蚀层裂缝处,涂层防黏附效果优异。  相似文献   

15.
高虹  张爱黎 《有色矿冶》2004,20(2):39-42
介绍了锂离子电池的特点和优势,锂离子电池的种类和工作原理以及该电池电极材料的种类和研究开发情况,阐述了开发军用锂离子电池及其电池材料的意义。  相似文献   

16.
废旧锰酸锂电池中含有大量的锰、锂等有价金属元素,具有非常高的经济回收价值。以硫酸作为浸出剂,研究了酸料比、还原剂种类、还原剂加入量、反应温度及反应时间对锰浸出率的影响。结果表明,在酸料比为2.5、浸出温度60℃、还原剂与原料比为1︰1,硫代硫酸钠为还原剂,反应时间1 h时,锰浸出率为94.01%;以过氧化氢为还原剂、反应0.5 h时,锰浸出率为99.91%。最终确定了硫代硫酸钠︰过氧化氢=8︰2作为联合还原剂,锰浸出率高达99.99%。  相似文献   

17.
综述了近年来有关高电位正极材料LiMxMn2-xO4和Li2MxMn4-xO8及LiMxV2-xO4(M代表过渡金属)的研究进展。过渡金属M的氧化是产生5V电位的原因。除容量很低的LiMxMn2-xO4外,随着M含量的增加,5V平台的容量增加,4V平台的容量下降。为了得到性能优良的高电位正极材料,需进一步提高电解质的稳定性和解决因析氧引起的安全问题,驾驶对5V平台的电化学反应机理和制备工艺-结构-电化学性能间的规律的研究。  相似文献   

18.
废旧磷酸铁锂电池回收对减少环境污染与缓解锂资源压力有重要意义。传统废旧磷酸铁锂电池回收存在锂回收率低、废水处理成本高的问题。通过借鉴Li-Fe-P-H2O系E-pH图及磷酸铁锂电池充放电脱嵌锂的过程,提出采用“过氧化氢+硫酸”体系选择性回收锂。经XRD、SEM检测,提锂后橄榄石型的FePO4结构与原始LiFePO4相结构保持一致,微观形貌的变化也很小。优化条件下,Li浸出率达98%以上,同时Fe、P的浸出率在0.1%以下。得到的锂浸出液经净化后成功制备出电池级的碳酸锂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号