首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.  相似文献   

2.
Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen is demonstrated as an alternative and improved method for creating fine-grained welds in dissimilar metals. Plates of AZ31 (Mg alloy) and AA5083 H34 were joined by friction-stir welding in three different environments, i.e., in air, water, and liquid nitrogen at 400?rpm and 50?mm/min. The temperature profile, microstructure, scanning electron microscopy (SEM)-energy-dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD), hardness, and tensile testing results were evaluated. In the stir zone of an air-welded specimen, formation of brittle intermetallic compounds of Al3Mg2, Al12Mg17, and Al2Mg3 contributed to cracking in the weld nugget. These phases were formed because of constitutional liquation. Friction-stir welding underwater and under liquid nitrogen significantly suppresses the formation of intermetallic compounds because of the lower peak temperature. Furthermore, the temperature profiles plotted during this investigation indicate that the largest amount of ?T is generated by the weld under liquid nitrogen, which is performed at the lowest temperature. It is shown that in low-temperature FSW, the flow stress is higher, plastic contribution increases, and so adiabatic heating, a result of high strain and high strain-rate deformation, drives the recrystallization process beside frictional heat.  相似文献   

3.
Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.  相似文献   

4.
An aluminum matrix composite containing rapidly solidified Ni75Al23B1Zr1 (at. pct) ribbons has been fabricated by casting at 700 °C, 715 °C, 730 °C, and 875 °C. Microstructural investigation has shown that the matrix contains particles with a composition between Al3Ni and eutectic. The interfacial zones composed of several layers with different aluminum and nickel contents are observed around the ribbons. The sequence of layers from the ribbon outward in the specimens fabricated at 700 °C, 715 °C, and 730 °C is as follows: AINi → Al3Ni2 → the outer layer between Al3Ni and eutectic. Composite specimens fabricated at 875 °C contain two types of interfacial zones: a single-layer AINi and a triple-layer zone. The first two layers in the triplelayer zone are exactly the same as their counterparts in the specimens fabricated at lower temperatures. The outer layer has a composition close to the Al3Ni compound. The thickness of the AINi layer increases continuously with the increasing casting temperature. Within the experimental error, the thickness of the Al3Ni2 layer seems to be independent of casting temperature. The thickness of the outer layer in the specimens fabricated at 700 °C to 730 °C (Al3Ni plus eutectic) increases with the casting temperature. However, the outer layer in the 875 °C specimen (Al3Ni) is much thinner than the others.  相似文献   

5.
Friction stir welding (FSW) takes place in the solid state, thus providing potential advantages of welds of high strength and ductility because of fine microstructures. However, post-FSW heat treatment can create very coarse grains, potentially reducing mechanical properties. AA5083-H18 sheets were friction-stir butt welded using three sets of welding parameters representing a wide range of heat input. They were then heat treated for 5 minutes at 738 K (465 °C), producing grain sizes exceeding 100 μm near the top weld surfaces, with the coarse grains extending toward the bottom surface to various degrees depending on the welding parameters. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), optical metallography, inductively coupled plasma–mass spectrometry, and Vickers hardness testing were used to characterize the regions within welds. Particle pinning was determined quantitatively and used with Humphreys’ model of grain growth to interpret the behavior. The mechanism responsible for forming the large grains was identified as abnormal grain growth (AGG), with AGG occurring only for regions with pre-heat-treatment grain sizes smaller than 3 μm. Second-phase particle volume fractions and sizes, textures, and solute concentrations were not significantly different in AGG and non-AGG regions. Ultrafine grain layers with grain diameters of 0.3 mm were characterized and had high densities of pinning particles of MgSi2, Al2O3, and Mg5Al8. Strategies to eliminate AGG by alloy and weld process design were discussed.  相似文献   

6.
The thermodynamic stability of precipitated phases at the steel-Ni-Mg alloy interface during laser brazing of Ni-plated steel to AZ31B magnesium sheet using AZ92 magnesium alloy filler wire has been evaluated using FactSage thermochemical software. Assuming local chemical equilibrium at the interface, the chemical activity–temperature–composition relationships of intermetallic compounds that might form in the steel-Ni interlayer-AZ92 magnesium alloy system in the temperature range of 873 K to 1373 K (600 °C to 1100 °C) were estimated using the Equilib module of FactSage. The results provided better understanding of the phases that might form at the interface of the dissimilar metal joints during the laser brazing process. The addition of a Ni interlayer between the steel and the Mg brazing alloy was predicted to result in the formation of the AlNi, Mg2Ni, and Al3Ni2 intermetallic compounds at the interface, depending on the local maximum temperature. This was confirmed experimentally by laser brazing of Ni electro-plated steel to AZ31B-H24 magnesium alloy using AZ92 magnesium alloy filler wire. As predicted, the formation of just AlNi and Mg2Ni from a monotectic and eutectic reaction, respectively, was observed near the interface.  相似文献   

7.
The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young’s modulus (182 GPa) were obtained in the composite hot isostatically pressed (“hipped”) at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.  相似文献   

8.
The microstructural evolution of Mg-7Al-2Sn (AT72) alloy processed by super vacuum die-casting and heat treated at various conditions was studied. The results showed that the dendritic microstructure in the as-cast AT72 alloy consisted of α-Mg, Mg2Sn, and Mg17Al12 phases. After solution treatment at temperatures ranging from 663 K to 703 K (390 °C to 430 °C), the Mg17Al12 phase dissolved into the Mg matrix entirely, while the Mg2Sn phase partially dissolved into matrix. An average grain size of about 40 μm in the alloy could be achieved after solution treatment at 683 K (410 °C) for 16 hours. A large amount of lath-shaped precipitates of Mg2Sn and Mg17Al12 was observed in the aged AT72 alloy. The results of tensile property evaluation at room temperature showed that the ductility of the solution-treated alloy was dramatically improved, in comparison with the as-cast alloy. In the peak aged condition, the tensile strength of the alloy was increased, which was attributed to the deposition of fine Mg17Al12 and Mg2Sn precipitates during the aging treatment.  相似文献   

9.
The dissolution and melting of Al2Cu phase in solution heat-treated samples of unmodified Al-Si 319.2 alloy solidified at ≈10 °C were studied using optical microscopy, image analysis, electron probe microanalysis (EPMA), and differential scanning calorimetry (DSC). The solution heat treat-ment was carried out in the temperature range 480 °C to 545 °C for solution times of up to 24 hours. Of the two forms of Al2Cu found to exist,i.e., blocky and eutectic-like, the latter type is more pronounced in the unmodified alloy (at ≈10 °C) and was observed either as separate eutectic pockets or precipitated on preexisting Si particles, β-iron phase needles, or the blocky Al2Cu phase. Dissolution of the (Al + Al2Cu) eutectic takes place at temperatures close to 480 °C through frag-mentation of the phase and its dissolution into the surrounding Al matrix. The dissolution is seen to accelerate with increasing solution temperature (505 °C to 515 °C). The ultimate tensile strength (UTS) and fracture elongation (EL) show a linear increase when plotted against the amount of dissolved copper in the matrix, whereas the yield strength (YS) is not affected by the dissolution of the Al2Cu phase. Melting of the copper phase is observed at 540 °C solution temperature; the molten copper-phase particles transform to a shiny, structureless phase upon quenching. Coarsening of the copper eutectic can occur prior to melting and give rise to massive eutectic regions of (Al + Al2Cu). Unlike the eutectic, fragments of the blocky Al2Cu phase are still observed in the matrix, even after 24 hours at 540 °C.  相似文献   

10.
The present article focuses on the high-temperature mechanical properties of the magnesium alloy AZ91. The addition of rare-earth (RE) elements up to 2 wt pct improves both yield and tensile strengths at 140 °C by replacing the Mg17Al12 phase with RE-containing intermetallic compounds. This intermetallic phase is thermally and metallurgically stable and is expected to boost the grain-boundary strengthening. It also increases the resistance of grain boundaries to flow at high temperatures. Further increases of RE additions reduce strength and ductility due to growth of the Al11RE3 brittle phase, which has sharp edges. Still, at a 3 wt pct RE addition, the strength of the alloy at high temperatures is more than that of AZ91.  相似文献   

11.
Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.  相似文献   

12.
The effects of 0.2, 0.6, and 1.0 wt pct Zr additions on the microstructure and creep behavior of AZ91 Mg alloy were investigated by impression tests carried out under constant punching stress (σ imp) in the range 100 to 650 MPa, corresponding to the modulus-compensated stress levels of 0.007 £ s\textimp \mathord
/ \vphantom 0.007 £ s\textimp G £ 0.044 G £ 0.044 {{0.007 \le \sigma_{\text{imp}} } \mathord{\left/ {\vphantom {{0.007 \le \sigma_{\text{imp}} } {G \le 0.044}}} \right. \kern-\nulldelimiterspace} {G \le 0.044}} , at temperatures in the range 425 K to 570 K (152 °C to 297 °C). The alloy containing 0.6 wt pct Zr showed the best creep resistance mainly due to the favorable formation of Al3Zr2 and Al2Zr intermetallic compounds, reduction in the volume fraction of the eutectic β-Mg17Al12 phase, and solid solution hardening effects of Al in the Mg matrix. Based on the obtained stress exponents of 4.2 to 6.5 and activation energies of 90.7 to 127.1 kJ/mol, it is proposed that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb compete. Dislocation climb controlled by dislocation pipe diffusion prevails at high stresses, whereas climb of edge dislocations is the controlling mechanism at low stresses.  相似文献   

13.
The constitution of the Pb-Sn-Sr system from the Pb-Sn binary up to 36 at. pct Sr was determined by differential thermal analysis, metallography, microprobe analysis, and X-ray diffraction. Pb3Sr forms a continuous series of solid solutions with Sn3Sr, and is referred to here as the8 phase. Sn4Sr was the only other intermetallic phase found and is designated here as γ. A eutectic-like trough is formed between (Pb) and δ. It originates at 1.0 at. pct Sr and 324.5 °C (the (Pb)/Pb3Sr eutectic) and falls monotonically to ~75 at. pct Pb, 24.5 at. pct Sn, and 0.45 at. pct Sr at 283 °C. At 283 °C, a Class II, four-phase reaction occurs: L + δ (Pb) + γ. A eutectic-like trough between (Pb) and γ falls from the four-phase plane at 283 °C to the ternary eutectic at ~26 at. pct Pb, ~74 at. pct Sn and <0.3 at. pct Sr at 182 °C. The ternary eutectic reaction is L → (Pb) + (Sn) + γ.  相似文献   

14.
Phase relationships in the neodymium-magnesium alloy system   总被引:2,自引:0,他引:2  
The Nd-Mg system was studied using differential thermal analysis (DTA), X-ray examination, metallography, and microprobe analysis. The following intermetallic compounds were found to exist and their crystal structures confirmed or determined: NdMg (cubic, cP2 CsCl type, melting point 800 °C), NdMg2 (cubic, cF24 MgCu2 type, peritectic formation ∼755 °C), NdMg3 (cubic, cF16 BiF3 type, melting point 780 °C), and Nd5Mg41 (tetragonal, tI92 Ce5Mg41 type, decomposes peritectically at 560 °C). The NdMg2 phase undergoes a eutectoidal decomposition at 660 °C. Three eutectic equilibria were observed to occur at 42.5 at. pct Mg and 775 °C, 64.5 at. pct Mg and 750 °C, and 92.5 at. pct Mg and 545 °C, respectively. In the Nd-rich alloys, previously determined data[15] concerning the Mg solubility in α-Nd (8.2 at. pct Mg, ≈550 °C) were accepted. The Mg solubility in β-Nd was evaluated as 34 at. pct Mg at 775 °C. The β-Nd phase was observed to decompose eutectoidally at 17 at. pct Mg and 545 °C. Moreover, in the Mgrich alloys, a metastable NdMg12 phase (tetragonal, tI26 ThMn12 type) was observed in samples quenched from the liquid. The general properties of the Nd-Mg phases are compared with those of the R-Mg compounds and briefly discussed.  相似文献   

15.
A great deal of research is being carried out on welding or bonding methods between iron and aluminum. However, it is not so easy to make Fe-Al bonding materials with both high strength and light weight. Recently, a new nitriding process has been proposed to produce aluminum nitride on an aluminum surface using a barrel. This study proposes a new concept in the production of a multilayer which has an AlN and Fe-Al intermetallic compound layer between the aluminum and steel using a barrel nitriding process. The bonding process was carried out from 893 K to 913 K (620 °C to 640 °C) for 18, 25.2, and 36 ks with Al2O3 powder and Al-Mg alloy powder. After the process, an aluminum nitride (AlN) layer and a Fe-Al intermetallic compound (Fe2Al5.4) layer were formed at the interface between the pure aluminum and SUS304 austenitic stainless steel. The thicknesses of the AlN layer and the intermetallic compound layer increased with increasing treatment temperature and time. The maximum hardnesses of the AlN layer and Fe2Al5.4 layers were found to be 377HV and 910HV, respectively, after barrel nitriding at 893 K (620 °C) for 18 ks.  相似文献   

16.
Microstructural changes and cyclic deformation characteristics of friction-stir-welded 7075 Al alloy were evaluated. Friction stir welding (FSW) resulted in significant grain refinement and dissolution of η′ (Mg(Zn,Al,Cu)2) precipitates in the nugget zone (NZ), but Mg3Cr2Al18 dispersoids remained nearly unchanged. In the thermomechanically affected zone (TMAZ), a high density of dislocations was observed and some dislocations were pinned, exhibiting a characteristic Orowan mechanism of dislocation bowing. Two low-hardness zones (LHZs) between the TMAZ and the heat-affected zone (HAZ) were observed, with the width decreasing with increasing welding speed. Cyclic hardening and fatigue life increased with increasing welding speed from 100 to 400 mm/min, but were only weakly dependent on the rotational rate between 800 and 1200 rpm. The cyclic hardening of the friction-stir-welded joints exhibiting a two-stage character was significantly stronger than that of the base metal (BM) and the energy dissipated per cycle decreased with decreasing strain amplitude and increasing number of cycles. Fatigue failure occurred in the LHZs at a lower welding speed and in the NZ at a higher welding speed. Fatigue cracks initiated from the specimen surface or near-surface defects in the friction-stir-welded joints, and the initiation site exhibited characteristic intergranular cracking. Crack propagation was characterized by typical fatigue striations along with secondary cracks.  相似文献   

17.
The microstructures of multiphase intermetallic alloys with compositions Al70Ti10V20 and Al62Ti10V28 based on the trialuminide Al3Ti have been characterized, following chill casting and postsolidification heat treatment, using a combination of scanning electron microscopy and transmission electron microscopy (TEM). Evidence of a eutectic reaction of the form L → δ-Al3(Ti, V)+ζ-Al8V5, not previously reported in the Al-Ti-V system, has been observed in both alloys solidified at sufficient levels of undercooling. The ζ phase is replaced by metallic β-(Ti, V) phase during subsequent heat treatment in the range 1073 to 1273 K, and differential thermal analysis (DTA) of samples prean-nealed at 1173 K revealed an endothermic peak at ∼1560 K, consistent with equilibrium eutectic melting of the form (δ+β) → L. Although the chill-cast alloys retained metastable intermediate high-temperature phases, duplex metallic-intermetallic microstructures, containing uniform fine-scale distributions of metallic β-(Ti, V) solid solution in a δ-Al3(Ti, V) intermetallic matrix, have been produced in both alloys during isothermal heat treatments at temperatures in the range 1073 to 1273 K. For both alloys, the bulk Vickers hardness of such microstructures remained in excess of that of binary Al3Ti, while in the Al62Ti10V28 alloy, where the increased volume fraction of β phase took the form of a near-continuous network within δ matrix, there was evidence arising from indentation tests of a substantial improvement in the cracking resistance compared to both chill-cast ternary alloy and binary Al3Ti.  相似文献   

18.
Heat-resistant aluminum alloys are generally developed by dispersing stable intermetallic compounds by adding transition metals (TM) whose diffusion coefficient in aluminum alloys is low even at high temperatures. Commonly used intermetallic compounds include Al-TM binary intermetallic compounds, for example, Al6Fe, Al3Ti and Al3Ni. By contrast, multicomponent intermetallic compounds are hardly used. The present study focuses on Al-Mn-Cu and Al-Mn-Ni ternary intermetallic compounds, and by finely dispersing these intermetallic compounds, attempts to develop heat-resistant alloys. Through the atomization method, Al-(4.96–5.96)Mn-(6.82–7.53)Cu-0.4Zr and Al-(5.48–8.76)Mn-(2.23–4.32)Ni-0.4Zr (in mass%) powders were fabricated, and by degassing these powders at 773 K, intermetallic compounds were precipitated. These powders were then solidified into extrudates by hot extrusion at 773 K. The microstructural characterization of powders and exrudates was carried out by XRD analysis, SEM/EDX and TEM. The mechanical properties of extrudates were determined at room temperature, 523 K and 573 K. In Al-Mn-Cu alloys, while a small amount of Al2Cu was crystallized, precipitated Al20Mn3Cu2 intermetallic compounds were mainly dispersed. In Al-Mn-Ni alloys, while a small amount of Al6Mn intermetallic compounds was precipitated, the precipitated A60Mn11Ni4 intermetallic compounds were mainly dispersed. Both ternary intermetallic compounds were about 200 nm in size. The compounds were elliptical, and their longitudinal direction was oriented along the extrusion direction. In the Al-Mn-Cu alloys, since the work hardening at room temperature was high, the tensile strength became 569 MPa. At elevated temperatures, since hardly any work hardening was observed, the tensile strength decreased markedly. However, in Al-Mn-Ni alloys, since the work hardening is low even at room temperature, the roomtemperature strength is not high. Thus, the decrease in tensile strength at elevated temperatures is relatively small and a high strength was obtained at 523 K and 573 K: 276 MPa and 207 MPa, respectively.  相似文献   

19.
Isothermal section of the Al–V–RE (RE = Gd, Ho) ternary systems at 773 K (500 °C) was investigated over the whole concentration range by means of X-ray diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. The crystal structures of the Al43Mo4Ho6-type ternary compounds Al43V4RE6 were determined with Rietveld refinement method. The intermetallic compound Al43V4Gd6 belongs to the Space group P63/mcm, with cell parameters of a = b = 1.0996(6) nm, c = 1.7813(9) nm, α = β = 90 deg, γ = 120 deg, and volume of unit cell of 1.8658(9) nm3. At 773 K (500 °C), all the Al-rich ternary alumides, i.e., Al43V4Gd6, Al20V2Gd, Al43V4Ho6, and Al20V2Ho appear without any significant homogeneity region. Five binary compounds, i.e., AlV3, Al4Gd, Al17Gd2, Al17Ho2, and AlHo2 reported in the literature were not found. Fifteen and 14 ternary phase fields have been identified in the isothermal section of the Al–V–Gd and Al–V–Ho ternary systems, respectively. The solid solubility of V in Al2RE3, AlRE, and Al2RE amounts to approximately 1.0 at. pct to 2.0 at. pct, whereas the solid solubility of Al in V is approximately 39 at. pct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号