首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
生物质热解制燃料油及化学品的工艺技术研究进展   总被引:12,自引:0,他引:12  
从生物质热解制液体燃料油(生物油)的收率和品质两方面论述了生物质热解关键技术和热解制备液体燃料工艺。通过对比分析了传统的生物质快速热解关键技术———热解反应器、加料技术、气-固快速分离技术及热解蒸汽快速冷凝技术的研究现状、难点和不足,并提出了新型生物质快速热解关键技术———旋转筛板热解工艺。同时针对现行生物质热解制燃料油工艺存在的不足,对比分析了4种热解制取燃料油工艺,并提出了汽爆、固态发酵的生化转化与快速热解相结合制取液体燃料的方法。  相似文献   

2.
曹金松  杨则恒 《广州化工》2013,(17):185-186,199
河北沧州200 kt/a焦炉气制甲醇项目,利用焦化装置副产的焦炉煤气,通过脱硫、纯氧转化及热回收、压缩、甲醇合成、精馏等工艺制取甲醇,本文简述了该焦炉气制甲醇装置工艺路线和各主要工段的工艺流程,阐述了该装置的设计技术特点和焦炉气制甲醇项目注意的要点。  相似文献   

3.
轻烃非催化转化合成气制氨、甲醇的创新技术   总被引:2,自引:0,他引:2  
分析了我国焦炉气、煤层气资源的生产利用状况,提出了将回收利用的焦炉气、煤层气通过轻烃非催化转化生产的合成气用于制氨和甲醇的创新技术。对催化与非催化2种合成气生产工艺技术进行了比较;从设计条件、工艺流程、生产能力、主要设备等方面对常压非催化转化制甲醇工艺技术进行了阐述,并进行了初步技术经济分析。结果表明,烃类非催化转化对原料毒物含量无要求,在高温下直接转化,得到的含CO较高的合成气有利用于甲醇合成。  相似文献   

4.
生物质能利用技术研究进展   总被引:6,自引:0,他引:6  
介绍了生物质能概念、开发利用生物质能的意义和价值以及其转化利用技术和现状。阐述了其开发前景。目前,生物质能的利用技术主要有直接燃烧法、生物化学法、热化学转化法、固体成型和生物柴油制取。我国生物质能利用的重点将是发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域。  相似文献   

5.
生物质是唯一能转化为液体燃料的可再生能源,生物质液化制取液体燃料及化学物品是生物质利用的主要发展方向。生物质液化主要包括裂解和高压液化两类。本文主要介绍了生物质纤维素裂解制备生物质裂解油的工艺、裂解反应器以及裂解油精制等。最后就我国目前的技术,提出了生物质制备裂解油的研究和发展趋势。  相似文献   

6.
《橡塑技术与装备》2007,33(1):53-53
波兰Tokarz公司开发的T—Technology新工艺过程,目前已应用于德国科隆的废塑料回收利用设施中。该技术将废弃塑料通过解聚转化为液体燃料或用于制取油品馏分,操作时无需加压。  相似文献   

7.
邹俭  张健  王春云 《化肥设计》2006,44(3):54-56
在介绍甲烷转化工艺和煤气化工艺制取合成气生产技术的基础上,着重介绍了以煤炭和煤层气中的甲烷为原料的双原料化合成气制造工艺。论述了该工艺流程的特点,对其关键设备———一室二段气流床气化炉从设备结构和应用效果方面进行了介绍。结果表明,在富产煤层气的地区,以双原料化工艺制取的合成气生产甲醇和二甲醚,生产效率比传统方法高10%~16%,并可减轻煤炭利用对环境的影响。  相似文献   

8.
为深度利用焦炉气资源,以焦炉气为原料进行转化并生产高附加值化学品,实现焦化企业节能减排和提高经济效益,结合理论及工程经验,对不同焦炉气制取乙二醇的技术方案进行全工艺流程优化,重点对比了焦炉气催化部分氧化和非催化部分氧化技术,同时对全厂工艺方案进行了经济性分析。结果表明:焦炉气转化制取合成气对全厂工艺方案影响较大,采用焦炉气非催化氧化技术制取合成气,合成气经净化和分离后制取乙二醇全厂工艺方案更优,具有投资低、消耗低和流程短等优点,乙二醇生产成本为3 974元/t,其财务内部收益率分别为25. 38%(税前)和20. 80%(税后),盈利能力较强,具备良好的经济效益和广阔的应用前景。  相似文献   

9.
本文提出了一种利用矿井区煤层气(CMM)生产甲醇的方法。经过脱硫后的煤层气,在催化剂存在下进行自热转化和外加热转化,得到的H2、CO2、CO,少量CH4和N2的混合气,利用二段变压吸附分离技术脱除氮气,得到含CO、CO2、少量N2气和含98%以上H2气的两股气,混合后得到甲醇的合成气。加压后,送入甲醇合成工序。以含40%烷的煤层气为原料,每吨甲醇脱氮费用约224元。具有较好的经济效益和社会效益。  相似文献   

10.
在目前全球对环境问题越来越重视的今天,二氧化碳的捕集和利用技术也越来越受到重视.然而煤化工行业是碳排放大户,如何减少煤化工企业对碳的排放,对于我们抑制全球变暖有着重要的意义。阐述了利用减压闪蒸法从低温甲醇洗装置中回收二氧化碳和利用醇胺吸收法从热电装置回收二氧化碳的两种方法。并对目前二氧化碳在焊接保护气,辅助采油,采煤层气以及合成碳酸二甲酯方面的应用做了简要的介绍。提出可以利用回收的二氧化碳就地转化合成碳酸二甲酯,延长煤制甲醇企业的产业链的想法。  相似文献   

11.
Lately, there has been considerable interest in the development of more efficient processes to generate syngas, an intermediate in the production of fuels and chemicals, including methanol, dimethyl ether, ethylene, propylene and Fischer–Tropsch fuels. Steam methane reforming (SMR) is the most widely applied method of producing syngas from natural gas. Dry reforming of methane (DRM) is a process that uses waste carbon dioxide to produce syngas from natural gas. Dry reforming alone has not yet been implemented commercially; however, a combination of steam methane reforming and dry reforming of methane (SMR + DRM) has been used in industry for several years.  相似文献   

12.
介绍了中国煤层气资源的分布,对各种利用形式加以阐述,并分析了煤层气发电系统的流程和各发电机组的优缺点,对中国煤层气发电利用案例进行举例说明,指出发电是煤层气利用的主要途径。  相似文献   

13.
Jack H. Lunsford   《Catalysis Today》2000,63(2-4):165-174
The very large reserves of methane, which often are found in remote regions, could serve as a feedstock for the production of chemicals and as a source of energy well into the 21st century. Although methane currently is being used in such important applications as the heating of homes and the generation of hydrogen for ammonia synthesis, its potential for the production of ethylene or liquid hydrocarbon fuels has not been fully realized. A number of strategies are being explored at levels that range from fundamental science to engineering technology. These include: (a) stream and carbon dioxide reforming or partial oxidation of methane to form carbon monoxide and hydrogen, followed by Fischer–Tropsch chemistry, (b) the direct oxidation of methane to methanol and formaldehyde, (c) oxidative coupling of methane to ethylene, and (d) direct conversion to aromatics and hydrogen in the absence of oxygen. Each alternative has its own set of limitations; however, economical separation is common to all with the most important issues being the separation of oxygen from air and the separation of hydrogen or hydrocarbons from dilute product streams. Extensive utilization of methane for the production of fuels and chemicals appears to be near, but current economic uncertainties limit the amount of research activity and the implementation of emerging technologies.  相似文献   

14.
Experimental investigation on plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges (DBDs) has been conducted. Zeolite A has been applied to inhibit the formation of carbon black and plasma-polymerized film during such plasma methane conversion. A co-generation of syngas, light hydrocarbons and liquid fuels has been achieved. The conversions and selectivities are determined by the CH4/CO2 feed ratio, residence time and input power. Compared to the use of zeolite X within the DBDs, plasma methane conversion with zeolite A leads to a higher selectivity of light hydrocarbons (C2–C4).  相似文献   

15.
Natural gas is an abundant resource in various parts of the world. Methane is the major component of natural gas, often comprising over 90 mol% of the hydrocarbon fraction of the gas. Methane itself is primarily used as a fuel, while the nonmethane components can be separated and used as feedstocks for the production of chemicals or liquid fuels. In many cases, however, natural gas reserves are found in locations distant from their place of utilization. Since it is not generally economical to transport liquefied natural gas, efficient methods are needed to convert methane into transportable liquid products. A possible route is oxidative dimerization of methane followed by oligomer-ization of the C2 products.  相似文献   

16.
In the present paper various gasification technologies/gasifiers and syngas cleaning options are critically reviewed keeping in view various types of feedstocks and various downstream applications of syngas such as power generation, chemicals and hydrogen production, liquid fuels production and synthetic natural gas (SNG) production. Recent developments on gasification technologies including fixed bed dry bottom (FBDB) gasification, power high temperature Winkler (PHTW) gasification, catalytic steam gasification, transport reactor gasifier as well as syngas cleanup technique including hot gas filter and warm cleaning are discussed. Techno-economic analysis of various gasifiers as well as syngas cleaning processes along with the world scenario of syngas production and its various downstream applications is also discussed.  相似文献   

17.
Oxidative Coupling of Methane to Higher Hydrocarbons   总被引:1,自引:0,他引:1  
Natural gas is an abundant resource in various parts of the world. Methane is the major component of natural gas, often comprising over 90 mol% of the hydrocarbon fraction of the gas. Methane itself is primarily used as a fuel, while the nonmethane components can be separated and used as feedstocks for the production of chemicals or liquid fuels. In many cases, however, natural gas reserves are found in locations distant from their place of utilization. Since it is not generally economical to transport liquefied natural gas, efficient methods are needed to convert methane into transportable liquid products. A possible route is oxidative dimerization of methane followed by oligomer-ization of the C2 products.  相似文献   

18.
介绍了山西煤层气资源及抽采利用概况;以阳泉、晋城等城市为例,详述了煤层气利用特点:范围扩大,并向纵深发展;通过阳煤集团、晋煤集团的现状,说明了"先采气后采煤、采气采煤一体化"逐步变成现实。最后,介绍了煤层气地面抽采的新进展及煤层气压缩与液化快速发展的情况。  相似文献   

19.
Different syngas configurations in a gas‐to‐liquid plant are studied including autothermal reformer (ATR), combined reformer, and series arrangement of gas‐heated reformer and ATR. The Fischer‐Tropsch (FT) reactor is based on a cobalt catalyst and the degrees of freedom are steam‐to‐carbon ratio, purge ratio of light ends, amount of tail gas recycled to synthesis gas (syngas) and FT synthesis units, and reactor volume. The production rate of liquid hydrocarbons is maximized for each syngas configuration. Installing a steam methane reformer in front of an ATR will reduce the total oxygen consumption per barrel of product by 40 % compared to the process with only an ATR. The production rate of liquid hydrocarbons is increased by 25.3 % since the flow rate of the purge stream for the ATR is the highest one compared to other configurations and contains mainly CO2.  相似文献   

20.
X. Hao  G. Dong  Y. Yang  Y. Xu  Y. Li 《化学工程与技术》2007,30(9):1157-1165
Production of fuels/chemicals from syngas (CO + H2) is receiving increased attention with the background of the resource depletion and the unstable prices of petroleum oil. The fuels, especially diesel, obtained from the syngas conversion via Fischer‐Tropsch synthesis (FTS), are proved to be of very high quality that will contribute much to environmental protection and raising the energy efficiency in the transportation sector when modern diesel engines are massively applied in vehicles. FTS technologies developed in recent years have reached the stage for the feasibility of construction of large‐scale complexes. Under a long‐term consideration of developing the field of coal to liquids (CTL), major issues in successfully applying CTL technologies are those controlling the feasibility of all kinds of projects. Points identified are, in general: (1) efficiency advantage over conventional processes (e.g. thermal power generation process); (2) cost and economic benefit; (3) environment advantage. These questions have been better answered using CTL‐based poly‐generation schemes. Among all the different schemes, in principle, the co‐production of liquid fuels and electricity are naturally the main frame. The simple efficiency increase due to the better energy balance in the co‐production mode and the environment protection advantage due to the easy‐to‐apply technology in the pollutant removal and treatment from syngas in a liquid fuel process has projected a bright future even for applying the more capital intensive IGCC + F‐T scheme, which can raise the efficiency (to end products) from 43–46 % in either single schemes to about 52–60 %. This new process will guarantee a better solution to environment protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号