首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Chlorophyllase catalyzes the bioconversion of chlorophyll into chlorophyllide by replacing the phytol group with a hydrogen atom. There is an increased interest in the biotechnological application of chlorophyllase for the removal of green pigments from edible oil and its potential as an alternative to the use of the conventional bleaching technique. Partially purified chlorophyllase, obtained from the alga Phaeodactylum tricornutum, was assayed for its hydrolytic activity in an aqueous/miscible organic solvent system containing refined-bleached-deodorized (RBD) canola oil, using chlorophyll and pheophytin as substrate models. The results indicated that chlorophyllase biocatalysis could be successfully carried out in an aqueous/miscible organic system containing RBD canola oil. The presence of 20% RBD canola oil decreased the hydrolytic activity of chlorophyllase by 2.2 and 6.7 times, using chlorophyll and pheophytin as substrates, respectively. In addition, acetone acted as an activator of chlorophyllase activity at low concentrations and an inhibitor at higher ones. The optimal reaction conditions for chlorophyllase biocatalysis in the aqueous/miscible organic system were determined to consist of 20% RBD oil and 10% acetone at a 200 rpm agitation speed and at a temperature and substrate concentration of 35°C and 12.6 μM for chlorophyll, and 30°C and 9.3 μM for pheophytin.  相似文献   

2.
Chlorophyllase converts chlorophyll and pheophytin into their colorless derivatives (chlorophyllide/pheophorbide and phytol). This activity can be used in chlorophyll removal from vegetable oils. Chlorophyllase genes from Oscillatoria acuminata (OscChlase) and Citrus aurantium (CitChlase) were isolated, cloned, and expressed in E. coli. Bioinformatics analysis showed that both chlorophyllases shared a conserved GHSXG lipase motif responsible for their catalytic activity. SDS-PAGE and immunoblot assays revealed that both enzymes had a molecular weight of 35 kDa. The purified chlorophyllases were stable at a broad range of temperatures and showed the highest activity at 40 °C. OscChlase and CitChlase exhibited the highest activity at pH 6.0 and 7.0, respectively. Enzyme kinetics analysis revealed that OscChlase was able to hydrolyze bacteriochlorophyll-a more efficiently than the recombinant CitChlase (Vmax/Km of 0.38 for OscChlase vs. 0.01 min−1 mg protein for CitChlase). Instead, CitChlase hydrolyzed chlorophyll-b more efficiently than OscChlase. Both enzymes were able to reduce the chlorophyll content of olive (from 623.1 to as low as 87.2 mg per kg oil) and canola oil (from 537.2 to as low as 101.1 mg per kg oil). The ratio of oil to the aqueous reaction media affected chlorophyll hydrolysis (P < 0.05). The lower the oil ratio was (10%), the higher the chlorophyll removal was (75–86%). The efficiency of CitChlase in chlorophyll removal was higher than that of OscChlase at oil ratios of 10 and 20, but lower at 30% ratio (P < 0.05). This is the first report on the application of recombinant OscChlase and CitChlase in chlorophyll removal (up to 86%) from vegetable oils.  相似文献   

3.
Increasing percentage of green canola seed every year is a serious problem for canola growers. Chlorophyll content of this oil is very high, which makes it more susceptible to photo‐oxidation and ultimately the oxidation stability of the oil is very reduced. Hence green seed canola oil is underutilized for edible purposes. The present work is an attempt to produce high‐quality biodiesel from green seed canola oil and methanol, ethanol and various mixtures of methanol and ethanol using KOH as a catalyst. A mixture of alcohols improved the rate of reaction. After transesterification of green seed canola oil using KOH, the chlorophyll content of the oil was decreased substantially (from 22.1 ppm to 10.3 ppm). Characteristics of the esters prepared from green seed canola oil were well within the limits of ASTM standards. Lubricity of the green seed oil esters was excellent (20% decrease in wear scar area) when added at 1 vol% to the base fuel. Oxidation stability is crucial for long‐term storage of the fuel. Oxidation stability index (OSI) of green seed esters was 4.9 h at 110 °C, which is much less than the European Standard (6 h at 100 °C). The low oxidation stability of green seed esters is attributed to its higher chlorophyll (10.3 ppm) content. An attempt was also made to reduce the chlorophyll content of the oil before transesterification using activated carbon treatment, and it was observed that chlorophyll content was reduced from 22.1 to 2.2 ppm. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
Because of the high level of chlorophyll-type compounds found in canola oil, bleaching is an important and critical step in the canola oil refining process. In this study, a new method for reducing the chlorophyll-type impurities prior to the bleaching step was developed. This method is based on precipitating the chlorophyll compounds with mineral acids. Concentrations of chlorophyll-type compounds of up to 30 ppm could be reduced to amounts of less than 0.01 ppm by mixing the crude canola oil with a 0.4 wt% mixture of phosphoric and sulfuric acids (2:0.75, vol/vol) for 5 min at 50°C. Centrifugation and filtration also were examined as two main methods for separating the chlorophyll precipitates. The results showed that filtration by a precoated textural filter with filter-aid clay could separate the precipitates as well as the centrifugation method.  相似文献   

5.
Abstract

In present study involving castor oil hydrolysis catalyzed by porcine pancreas lipase, organic solvent, and ionic liquid were applied to augment production of ricinoleic acid. Toluene was the best organic solvent (30.18% hydrolysis in 2?h). In presence of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), an ionic liquid, the optimal conditions were, 0.12?g ionic liquid/g oil, 4?mg enzyme/g oil, 2?g buffer/g oil, pH of 8, and 2.5?h. Under this condition, ricinoleic acid recovery was 43.41 and 52% at 25?°C and 35?°C, respectively. Organic solvent concentration, enzyme concentration, buffer concentration and time had significant impacts on lipase catalyzed hydrolysis in the presence of organic liquid; whereas, pH and speed remained insignificant. In hydrolysis involving ionic liquid, time had most important effect on ricinoleic acid production. Interaction between enzyme and buffer concentration was most significant. Interactions of ionic liquid concentration with all other variables were also significant besides buffer concentration–time interaction.  相似文献   

6.
This study is concerned with the hydrolysis of sunflower oil in the presence of lipase preparation Lipolase 100T (Aspergillus niger lipase). Supercritical carbon dioxide was used as a solvent for this reaction. In a high-pressure stirred tank reactor operated in a batch mode, the effects of various process parameters (temperature, pressure, enzyme/substrate ratio, pH, and oil/buffer ratio) were investigated to determine the optimal reaction rate and conversion for the hydrolysis process. The optimal concentration of lipase was 0.0714 g/mL of CO2-free reaction mixture, and the highest conversions of oleic acid (0.193 g/g of oil phase) and linoleic acid (0.586 g/g of oil phase) were obtained at 50°C, 200 bar, pH=7, and an oil/buffer ratio of 1∶1 (w/w).  相似文献   

7.
In the present study, the effect of process conditions on whey lactose hydrolysis and enzyme inactivation were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution by using β-galactosidase produced from Kluyveromyces marxianus lactis in a batch reactor system. The degree of lactose hydrolysis (%) and residual enzyme activity (%) against time were investigated versus lactose concentration, enzyme concentration, temperature and pH. The mathematical models were derived from the experimental data to show the effect of process conditions on lactose hydrolysis and residual enzyme activity (in the presence and absence of lactose). At the optimum process conditions obtained (50 g/L of lactose concentration, 1 mL/L of enzyme concentration, 37 °C of temperature and pH 6.5), 81% of lactose was hydrolyzed and enzyme lost its activity by 32%. The activation energy for hydrolysis reaction (E A ) and the enzymatic inactivation energy (E D ) were calculated as 52.7 kJ/mol and 96.7 kJ/mol. Mathematical models at various process conditions have been confirmed with the experimental results.  相似文献   

8.
There is an increasing interest in natural antioxidants present in traditional Chinese herbal medicines. The present study examined the antioxidant activity of heane, acetone, and methanol extracts, as well as baicalein purified from the dry roots of Scutellaria baicalensis Georgi (common name: Huangqin), in heated canola oil. Oxygen consumption and decreases in linoleic acid linolenic acid content were monitored in canola oil held at 90–93°C. Among the three extracts, the acetone extract was most effective against oxidation of canola oil, followed by the methanol extract of the dry roots. The antioxidant activity of these three extracts correlated well with their content of baicalein, which provided strong protection to canola oil from oxidation. The antioxidant activity of Huangqin acetone extract was dose-dependent. The acetone extract at 100 ppm or above was even more effective than butylated hydroxytoluene at 200 ppm in protecting canola oil from oxidation. The present results suggest that the acetone extract of these roots should be further explored as a potential source of natural antioxidants for use in the processed foods.  相似文献   

9.
Crude proteolytic enzyme was extracted from papaya latex using two solvents, water and phosphate buffer pH 6. The yield of extracted enzyme using water as a solvent was similar to that using phosphate buffer. Following the solvent extraction, the extracted enzyme was precipitated in 45 wt% saturated ammonium sulfate solution. The yield and activity of precipitated enzyme considerably decreased. Crude proteolytic enzyme extracted using water as an extracting liquid was, therefore, selected to use in gelatin production from raw hide hydrolysis, comparing to the use of commercial papain. The effects of hydrolysis conditions on gelatin recovery and properties of obtained gelatin were investigated. The optimum conditions for the activities of both crude extracted enzyme and commercial papain were at 75 °C and pH 7. At this condition, the highest percentages of gelatin recovery were obtained from raw hide hydrolysis reactions. The gelatin recovery and gel strength of gelatin obtained from crude extracted enzyme and commercial papain hydrolysis were similar. This proved that crude extracted enzyme from papaya latex could be effectively used in gelatin production, instead of the use of commercial papain, with a comparatively low cost.  相似文献   

10.
Lipase was extracted and purified from Pseudomonas aeruginosa SRT9. Culture conditions were optimized and highest lipase production amounting to 147.36 U/ml was obtained after 20 h incubation. The extracellular lipase was purified on Mono QHR5/5 column, resulting in a purification factor of 98-fold with specific activity of 12307.81 U/mg. Lipase was immobilized on tri (4-formyl phenoxy) cyanurate to form Schiff’s base. An immobilization yield of 85% was obtained. The native and immobilized lipases were used for catalyzing the hydrolysis of olive oil in aqueous medium. Comparative study revealed that immobilized lipase exhibited a shift in optimal pH from 6.9 (free lipase) to 7.5 and shift in optimal temperature from 55 °C to 70 °C. The immobilized lipase showed 20–25% increase in thermal stability and retained 75% of its initial activity after 7 cycles. It showed good stability in organic solvents especially in 30% acetone and methanol. Enzyme activity was decreased by ∼60% when incubated with 30% butanol. The kinetic studies revealed increase in K M value from 0.043 mM (native) to 0.10 mM for immobilized lipase. It showed decrease in the V max of immobilized enzyme (142.8 μmol min−1 mg−1), suggesting enzyme activity decrease in the course of covalent binding. The immobilized lipase retained its initial activity for more than 30 days when stored at 4 °C in Tris-HCl buffer pH 7.0 without any significant loss in enzyme activity.  相似文献   

11.
The present study examined the antioxidant activity in heated canola oil of hexane, acetone, and methanol extracts of dry roots of gansu huangqin (Scutellaria rehderiana) as well as six flavonoids isolated from the acetone and methanol extracts. The oxidation was conducted at 95°C by monitoring oxygen consumption and decreases in both linoleic and α-linolenic acids. The acetone extract was most effective in inhibiting oxidation of canola oil, followed by the methanol extract. The antioxidant activity of gansu huangqin acetone extract was dose-dependent. Among the six flavonoids, baicalein and ganhuangenin were more effective than butylated hydroxytoluene (BHT) in protecting canola oil from oxidation. The present results suggest that the acetone extract of this root may be a potential source of natural antioxidants for use in processed foods.  相似文献   

12.
This study details the enzymatic destabilization of the emulsion formed during aqueous extraction of peanut seeds and the quality of the resulting oil. The emulsion was exposed to enzymatic treatment and pH adjustment. The experimental results suggest that the alkaline endopeptidase Mifong®2709 was the most effective demulsifier, while Phospholipase A2 and pH adjustment had little effect on emulsion stability. The demulsifying conditions of Mifong®2709 were optimized by response surface methodology (RSM). The optimal conditions which produced a free oil yield of ~94 % were: 1:1 water-to-emulsion ratio, enzyme concentration of 1,600 IU/g of emulsion and 70 min hydrolysis time at 50 °C. We found that these conditions resulted in a positive relationship (R 2 = 0.9671) between free oil yield and the degree of protein hydrolysis. Increased protease treatment produced a smaller number of oil droplets, but the size of these droplets increased significantly. When compared to demulsified oil products obtained by using thermal treatment, the oil obtained by Mifong®2709 exhibited lower acid and peroxide values, contained more tocopherols and had a longer induction time as determined in the Rancimat test. The high yield and quality of peanut oil obtained by enzymatic treatment makes enzyme demulsification a promising approach to recovering free oil in aqueous extractions of peanuts.  相似文献   

13.
Green seed canola oil is underutilized for edible purposes due to its high chlorophyll content, which makes it more susceptible to photo‐oxidation and ultimately reduces the oxidation stability. The present work is an attempt to compare the kinetics of epoxidation of crude green seed canola oil (CGSCO) and treated green seed canola oil (TGSCO) with peroxyacids generated in situ in presence of an Amberlite IR‐120 acidic ion exchange resin (AIER) as catalyst. Among the two oxygen carrier studied, acetic acid was found to be a better carrier than the formic acid, as it gives 8% more conversion of double bond than the formic acid. A detailed process developmental study was then performed with the acetic acid/AIER combination. For the oils under investigation parameters optimized were temperature (55°C), hydrogen peroxide to double bond molar ratio (2.0), acetic acid to double bond molar ratio (0.5), and AIER loading (15%). An iodine conversion of 90.33, 90.20%, and a relative epoxide yield of 90, 88.8% were obtained at the optimum reaction conditions for CGSCO and TGSCO, respectively. The formation of the epoxide product of CGSCO and TGSCO was confirmed by Fourier Transform IR Spectroscopy (FTIR) and NMR (1H NMR) spectral analysis.  相似文献   

14.
Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide   总被引:4,自引:0,他引:4  
The effect of pressure, temperature, and CO2 flow rale on the extent of conversion and the product composition in the enzyme-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2) was investigated using lipase from Mucor miehei immobilized on macroporous anionic resin (Lipozyme IM). Reactions were carried out in a continuous flow reactor at 10, 24, and 38 MPa and 35 and 55°C. Supercritical fluid chromatography was used to analyze the reaction products. A conversion of 63–67% (triglyceride disappearance) was obtained at 24–38 MPa. Mono-and diglyceride production was minimum at 10 MPa and 35°C. Monoglyceride production was favored at 24 MPa. The amount of product obtained was higher at 24–38 MPa due to enhanced solubility in SCCO2. Complete hydrolysis of oil should be possible by increasing the enzyme load and/or decreasing the quantity of the oil substrate. There was a drop in triglyceride conversion over a 24-h reaction time at 38 MPa and 55°C, which may be an indication of loss of enzyme activity. Pressure, temperature, and CO2 flow rate are important parameters to be optimized in the enzyme-catalyzed hydrolysis of canola oil in SCCO2 to maximize its conversion to high-value products.  相似文献   

15.
Sacha inchi (Plukenetia volubilis) oil has high polyunsaturated fatty acids content. The hydrolysis of this oil is an efficient way to obtain desirable free fatty acids (FFA). The optimization of parameters was carried out according to the maximum production of FFA using two enzymatic hydrolysis processes. The effect of enzyme concentration (5–40 % based on weight of oil), temperature (40–60 °C), and oil:water molar ratio (1:5–1:70) were studied for the conventional enzymatic hydrolysis process, while pressure (10–30 MPa) and oil:water molar ratio (1:5–1:30) were studied for the enzymatic hydrolysis in supercritical carbon dioxide (SC-CO2) media. The hydrolysis in SC-CO2 media resulted in higher production of FFA (77.98 % w/w) at 30 MPa and an oil:water molar ratio equal to 1:5 compared to the conventional process (68.40 ± 0.98 % w/w) at 60 °C, oil:water molar ratio equal to 1:70, and 26.17 % w/w, enzyme/oil. The only significant parameter on the production of FFA for conventional enzymatic hydrolysis was enzyme concentration, while for the hydrolysis in SC-CO2 media both pressure and the molar ratio of oil:water were significant. Lipid class analyses showed that with both methods, FFA, monoglycerides, and diglycerides content in the final product increased compared to pure oil, while triglycerides content decreased. Fatty acid composition analysis showed that the content of fatty acids in the FFA form were similar to their triglyceride form.  相似文献   

16.
Chlorophyll pigments in crude and degummed canola oils were analyzed by spectrophotometry using a modified AOCS Method and by reversed phase HPLC. HPLC showed that crude canola oils contained very littlechlorophyll a orb, these pigments having been converted to pheophytins and other pigments with similar spectral properties. The ratio ofchlorophyll a∶b in the seed was found to be about 3∶1 while the ratio ofpheophytin a∶b in the oil was about 9∶1. As the AOCS Method for determining oil chlorophyll was calibrated for pure chlorophyll, the use of this method on crude canola oil results in a significant error. Recalibration of the spectrophotometric procedure with pheophytin gave better agreement with the HPLC method. Paper No. 635 of the Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg., Manitoba, Canada R3C 3G8. Presented at the A.O.C.S. 79th Annual Meeting, Phoenix.  相似文献   

17.
An ethanol-assisted aqueous enzymatic extraction was performed for peony seed oil (content of 30%). This method included cooking pretreatment, pectinase hydrolysis, and aqueous ethanol extraction, and the corresponding variables in each step were investigated. The changes in viscosity and dextrose equivalent values of the reaction medium as a function of changing enzymatic hydrolysis time were compared to the oil yield. The microstructures of peony seeds were analyzed using confocal laser scanning microscopy to understand the process of oil release as a result of cooking and grinding. The highest oil yield of 92.06% was obtained when peony seeds were cooked in deionized water with a solid–liquid ratio of 1:5 (w/v) at 110°C for 1 hour, ground to 31.29 μm particle size, treated with 0.15% (w/w) pectinase (temperature 50°C, pH 4.5, time 1 hour), and then extracted with 30% (v/v) aqueous ethanol (temperature 60°C, pH 9.0, time 1 hour). After processing with pectinase followed by ethanol extraction, the residual oil content in water and sediment phase decreased to 5% and 3%, respectively. The quality of the oil obtained by ethanol-assisted aqueous enzymatic extraction was good, complying with the Chinese standard.  相似文献   

18.
Immobilization of Lecitase (Phospholipase A1) in gelatin hydrogel and its stability is studied with a view to utilizing the immobilized enzyme for degumming rice bran oil. Excellent retention of enzyme activity (>80%) is observed in hydrogel containing 43.5% gelatin crosslinked with glutaraldehyde. Compared to the free enzyme which has a broad pH-activity profile (6.5–8.0), the activity of the immobilized enzyme is strongly dependent on pH and has a pH-optimum of pH 7.5. The optimum temperature of enzyme activity increases from 37 to 50 °C. Compared to the free enzyme which loses all its activity in 72 h at 50 °C, the immobilized enzyme retains its activity in full. The immobilized enzyme has been used efficiently in a spinning basket bioreactor for the degumming of rice bran oil with 6 recycles without loss of enzyme activity. The phosphorus content of the oil decreases from 400 ppm to 50–70 ppm in each cycle. After charcoal treatment and dewaxing, a second enzymatic treatment brings down the phosphorus content to <5 ppm.  相似文献   

19.
The minimal refining method described in the present study made it possible to neutralize crude canola oil with Ca(OH)2, MgO, and Na2SiO3 as alternatives to NaOH. After citric acid degumming, about 98 % of the phosphorous content was removed from crude oil. The free fatty acid content after minimal neutralization with Ca(OH)2 decreased from 0.50 to 0.03 %. Other quality parameters, such as peroxide value, anisidine value, and chlorophyll content, after traditional and minimal neutralization were within industrial acceptable levels. The use of Trisyl silica and Magnesol R60 made it feasible to remove the hot-water washing step and decreased the amount of residual soap to <10 mg/kg oil. There were no significant changes in chemical characteristics of canola oil after using wet and dry bleaching methods. During traditional neutralization, the total tocopherol loss was 19.6 %, while minimal refining with Ca(OH)2, MgO, and Na2SiO3 resulted in 7.0, 2.6, and 0.9 % reductions in total tocopherols. Traditional refining removed 23.6 % of total free sterols, while after minimal refining free sterols content did not change. Both traditional and minimal refining resulted in almost complete removal of polyphenols from canola oil. Total phytosterols and tocopherols in two cold-pressed canola oils were 774 and 836 mg/100 g, and 366 and 354 mg/kg, respectively. The minimal refining method described in the present study was a new practical approach to remove undesirable components from crude canola oil meeting commercial refining standards while preserving more healthy minor components.  相似文献   

20.
The present study presents the antioxidant activity of sesamin in canola oil compared with that of butylated hydroxytoluene (BHT) by monitoring the oxygen consumption and the decrease in linoleic acid and α-linolenic acid. The oxidation of canola oil was conducted at 35, 60, 90, 120 and 180 °C with addition of 50–400 ppm sesamin. Results from the oxygen consumption test showed that sesamin dose-dependently inhibited the oxidation of canola oil at concentrations of 50–200 ppm at temperatures of 60–180 °C, however, sesamin lost its antioxidant activity at a low temperature of 35 °C. The fatty acid analysis also demonstrated that sesamin at 50, 100 and 200 ppm dose-dependently prevented the oxidation of linoleic acid and α-linolenic acid in canola oil. Both the oxygen consumption and the fatty acid analysis demonstrated sesamin was less effective than BHT as an antioxidant at temperatures of 60–180 °C. It was therefore concluded that sesamin could prevent the lipid oxidation of frying fats and oil, however, its antioxidant activity was not as potent as that of BHT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号