首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提出一种基于精确线性化变结构控制的双馈感应风力发电机(DFIG)的低电压穿越控制器设计方法。建立了DFIG在同步旋转dq坐标系下的非线性数学模型,在此模型基础上,采用精确线性化将原非线性系统模型转化为线性系统模型。应用变结构控制原理设计DFIG的发电机转子侧及电网侧变流器的控制器,同时通过PI控制以稳定直流侧电容电压。最后,利用MATLAB仿真软件搭建了6×1.5 MW的DFIG系统仿真模型,仿真结果表明,所设计的控制器能够在电压跌落后抑制转子过电流以及直流母线过电压现象,实现了DFIG的低电压穿越。  相似文献   

2.
针对双馈风电机组(DFIG)低电压穿越问题,为克服传统撬棒(Crowbar)电路保护的不足,以抑制故障期间转子电流并兼顾防止直流母线过电压为目的,提出一种“电阻串联电容撬棒保护电路+直流卸荷(Chopper)电路”的综合控制策略。建立在转子侧Crowbar电路电阻串联电容,在直流母线侧加入Chopper电路的改进双馈机组模型,给出Crowbar电路电阻值及串联的电容值的取值方法,并对其控制策略进行分析。在Matlab/Simulink仿真平台上搭建系统模型进行仿真验证,结果表明该低电压综合穿越策略能够有效提升双馈风电机组低电压穿越能力。  相似文献   

3.
要保证双馈电机具有低电压穿越能力,关键是要限制转子过电流和直流母线过电压。提出了采用转子侧Crowbar保护电路和直流侧卸荷保护电路协调配合的保护方案。用转子侧保护电路来抑制转子过电流,直流侧卸荷保护电路来维持直流母线电压恒定。在此基础上用MATLAB/Simulink软件搭建了仿真模型,并从理论仿真和现场实验测试2个方面对该方法进行验证,仿真与实验结果表明,该方案可以提高DFIG低电压穿越能力。  相似文献   

4.
双馈感应风力发电机实现LVRT仿真研究   总被引:1,自引:0,他引:1  
在基于双馈电机的并网风力发电系统中,一般采用附加转子侧撬棒电路的方法来实现低电压过渡。当电网电压发生严重短暂跌落故障时,可以同时附加直流侧卸荷电路以更好地实现低电压穿越。为实现低电压运行,撬棒电阻值的选取至关重要。在考虑最大转子故障电流和直流母线钳位效应的双重因素下,给出了双馈式风电机组撬棒保护电阻取值约束式,并讨论了DFIG附加两种保护电路后具体的低电压穿越控制策略。对2MW DFIG风力发电系统进行仿真,结果表明,在选择合适的保护电阻基础上,通过对保护电路的合理控制,附加撬棒电路和直流侧卸荷电路可以有效帮助DFIG实现低电压穿越运行。  相似文献   

5.
在电网发生电压跌落故障的情况下,双馈异步发电机(Doubly-Fed Induction Generator,DFIG)多采用撬棒保护电路以实现低电压穿越(Low Voltage Ride Though,LVRT),而撬棒阻值的选择对机组的LVRT效果影响很大。从DFIG在电压跌落故障下的暂态数学模型出发,运用空间矢量分析和拉普拉斯变换的方法,推导出风电机组在电压跌落故障下的暂态电流时域表达式、转子侧故障电流的计算式。由此提出一种切合工程实际的撬棒阻值整定方法,解决了投入撬棒保护电路后转子侧出现过电流和直流母线过电压的问题。算例及仿真实验数据均表明,采用该方法可有效抑制暂态故障分量,显著提高风力发电系统的LVRT水平。  相似文献   

6.
针对双馈感应风力发电机(double fed induction generator,DFIG)低电压穿越问题,该文对基于撬棒保护的DFIG暂态特性进行分析,在此基础上利用叠加原理推导出转子短路电流表达式;为克服传统撬棒保护的不足,提出一种电阻与电容串联的改进Crowbar电路结构,并以抑制故障期间转子浪涌电流为目的给出串联电容值的整定方法,使其更有效的抑制转子过电流,且利用电容发出无功的特性减小故障期间DFIG从电网吸收的无功功率;综合考虑故障期间机组的无功需求,对网侧换流器进行控制策略改进,使其在维持直流母线电压稳定的同时能够为系统提供一定的无功支撑。仿真结果验证了所提Crowbar串联电容的DFIG低电压穿越综合控制策略的有效性。  相似文献   

7.
针对传统撬棒电路(采用固定电阻)在解决双馈风力发电机(DFIG)低高电压连锁故障穿越时,难以兼顾发电机转子侧电流和直流母线电压的抑制问题,采用电机电磁暂态分析的方法,找出了双馈风力发电机转子电流、电压与撬棒电阻的关系,提出一种撬棒电阻动态自适应的控制方法。该方法适用于低电压、高电压及低高电压连锁故障,解决了电网故障穿越时无法同时抑制转子电流和母线电压的波动问题。采用理论分析和仿真实验,证明该方法在电压跌落故障、电压骤升故障以及低高压连锁故障下能够有效地抑制转子电流和直流母线电压的波动,提高了系统的故障穿越能力。  相似文献   

8.
提出一种基于串联动态制动电阻(SDBR)的低电压主动保护方法,在电网故障时吸收由于电网电压跌落引起的不平衡功率,保证故障期间双馈风电机组不脱网运行。分析SDBR对DFIG的暂态影响,提出SDBR的投切控制策略。根据低电压穿越(LVRT)规范对无功功率的要求,研究转子侧变流器无功补偿控制方式。利用PSCAD/EMTDC仿真平台,建立基于SDBR的双馈风电系统仿真模型,对三相对称故障时DFIG的低电压穿越能力进行仿真研究。仿真结果表明,串联动态制动电阻能够有效的抑制定、转子过电流,限制直流母线过电压,从而提高DFIG的低电压穿越能力,保证风电系统的不脱网运行。  相似文献   

9.
针对双馈感应风力发电机(DFIG)撬棒保护实现故障穿越的不足,从电网电压跌落期间机组的整体需求出发,提出一种基于定子串联阻抗的DFIG低电压穿越综合控制策略。分析了定子串联阻抗控制策略改善DFIG故障穿越的机理,给出了串联阻抗阻值的整定方法。在转子侧换流器中附加无功补偿控制策略,充分发挥了定子侧的无功支撑能力,加快电网电压的恢复。仿真结果表明:所提的综合控制策略增强了DFIG的故障穿越能力,抑制了转子电流、直流母线电压、电磁转矩的冲击,同时能够满足无功支撑的需求,克服了传统撬棒保护的不足,兼顾了故障结束后机组的稳定运行。  相似文献   

10.
双馈风电机组在电网故障期间保持并网运行,其输出的短路电流对电力系统保护和控制产生较大影响。电网故障下,双馈风电机组通常先投入撬棒保护并闭锁转子侧变流器,而后重启转子侧变流器控制机组输出无功功率。目前,针对双馈风电机组短路电流已有较多研究,但是尚未考虑低电压穿越全过程中机组运行状态切换所造成的电气参量的变化,可能造成短路电流的分析和计算出现较大误差。为此,分别建立了撬棒投入和转子侧变流器无功控制两个阶段的双馈感应发电机(doubly-fed induction generator,DFIG)数学模型,推导了这2个阶段DFIG定子短路电流的表达式,分析了低电压穿越方式的切换对DFIG输出短路电流的影响,提出了低电压穿越全过程DFIG短路电流的计算方法,并通过时域仿真验证了理论分析的正确性。  相似文献   

11.
低电压穿越能力是双馈风电机组(DFIG)最重要的性能指标之一。网压跌落时,应用Crowbar电路使得转子变流器闭锁,转子电流处于暂态过程。针对采用Crowbar电路限制DFIG转子侧过电流和直流侧过电压存在的不足,论文提出一种基于转子电流源控制且电流指令一阶导数恒定的低压穿越强励直流灭磁控制策略,并给出灭磁电流归零的约束条件及转子暂态电流可控的必要条件,实现低压跌落过程及电压恢复过程电机直流磁链分量的强制衰减和灭磁过程后转子交流励磁电流的快速控制,显著降低了机组在低压穿越过程的无功消纳。仿真及实验结果验证了理论分析的正确性,为双馈风电系统的低压穿越提供了一种有效的控制方案。  相似文献   

12.
为增强双馈风力发电系统(DFIG)的动态响应速度,设计了滑模电流控制器。分析了DFIG能量流动关系,并从抑制能量向转子侧流动的角度考虑,提出了电网故障时刻转子侧变流器的改进控制策略。对所提改进控制策略进行了对比仿真分析。结果表明,该方法能有效地抑制转子侧过电流和电磁转矩振荡,动态性能好,提高了DFIG的低电压穿越能力。  相似文献   

13.
王阳 《黑龙江电力》2012,34(4):273-277
针对双馈感应发电机在低电压穿越过程中所遇到定子、转子过流的问题,笔者提出采用主动Crowbar保护电路作为转子过电流旁路通道,以抑制直流母线过电压.通过在PSCAD/EMTDC平台下搭建双馈感应发电机的仿真模型及对有无Crowbar电路的DFIG在三相短路条件下进行仿真,其结果证明,主动Crowbar电路能够有效实现双馈感应发电机在故障条件下的低电压穿越.  相似文献   

14.
动态调整转子撬棒阻值的双馈风电机组低电压穿越方法   总被引:2,自引:0,他引:2  
双馈感应发电机(DFIG)等大型电力电子发电设备接入电网,改变了电力系统源端的暂态特性。在系统故障下,为保证DFIG不脱网运行,常采用转子撬棒保护电路完成低电压穿越(LVRT)。DFIG的暂态特性与故障发生时刻和故障程度有关,传统固定阻值的撬棒电路很难保证不同故障下的LVRT。从时域角度推导了撬棒投入后的暂态转子电流表达式,并提出了基于动态调整转子撬棒阻值的DFIG的LVRT方案,制定了转子撬棒自适应控制策略及阻值整定方法。仿真分析了不同电压跌落深度下所提方案的LVRT特性。结果表明,所提方法不仅能够满足不同电压跌落深度下的转子电流和直流母线电压,而且降低了撬棒投入次数及时间。  相似文献   

15.
针对目前低电压穿越(LVRT)方案,尤其是转子并联撬棒在穿越过程中存在的不足,提出了一种软硬件结合的双馈风力发电机(DFIG)综合低电压穿越策略。硬件方面,采用定子串联电抗(SSL)的方式来抑制转子电流,在理论分析故障时转子电流骤升机理的基础上,提出一种定子串联电抗阻值的整定方案;软件方面,由于转子侧变流器(RSC)不需要被闭锁,因此通过改进的RSC控制策略来抵消定子串联电抗导致电磁转矩振荡时间延长的负面影响,并在RSC控制中附加故障期间的无功补偿目标,以充分发挥DFIG定子侧的无功输出能力。仿真结果表明:综合穿越策略能有效抑制转子电流的峰值、电磁转矩振荡的幅度及振荡持续的时间,同时能够达到利用DFIG自身向电网提供无功支持的效果。因此,所提方法不仅能够保证DFIG的低电压穿越性能,而且有利于系统的暂态稳定性。  相似文献   

16.
为增强电网故障下双馈风力发电系统(DFIG)的低电压穿越(LVRT)运行能力,提出一种DFIG转子侧变换器(RSC)强励控制策略。在基于定子磁链定向的矢量控制策略中增加多频比例谐振控制器(MFPR),当电网故障造成发电机定子电压跌落时,多频比例谐振控制器能够对转子侧变换器(RSC)的输出励磁电压进行补偿,抑制转子故障电流,实现DFIG的低电压穿越运行。分析了转子电压等级与DFIG的低电压穿越运行区间的关系,为DFIG转子侧变换器的电压等级设计标准提供了参考依据。控制系统结构简单,保证了系统的响应速度,可同时对电网对称跌落和不对称跌落产生的故障电流进行抑制。通过对1.5 MW双馈风力发电机组进行仿真研究,验证了理论分析的正确性和所提控制策略的可行性。  相似文献   

17.
为了优化电网电压发生不对称故障时双馈风力发电机(doubly fed induction generator,DFIG)的低电压穿越(low voltage ride through,LVRT)能力,提出一种优化方法,即在转子侧串联电阻和电容改善DFIG的LVRT能力。传统的Crowbar方法中,故障期间DFIG将产生不可控的情形并且吸收一定无功,不利于电网电压恢复。而采用转子串阻容方法,限制了转子侧电压的负序分量和直流分量,抑制了转子开路电压和转子过电流,保证了DFIG在故障期间可控状态,并提供无功,有利于电网电压的恢复。仿真结果表明,所提方法能使DFIG成功进行低电压穿越,保证了DFIG在故障期间可控。  相似文献   

18.
目前研究双馈风电机组(DFIG)高电压穿越的重点是单次高压型故障,然而DFIG低电压穿越后,由于无功补偿策略的不合理性,会引发低高电压复合型故障,对电压二次骤升的暂态分析造成一定影响。因此,在低压恢复阶段的前提下,对电压二次骤升下的转子电流公式进行合理推导,并提出一种转子过电流抑制策略。然后基于故障穿越时系统的无功需求,改进网侧变流器的控制策略。该策略一方面能够减少撬棒保护的投切频率,在一定程度上避免转子侧换流器旁路造成的不可控性;另一方面能够最大限度地向机组给予无功支持,保持直流母线电压处于稳定状态,提升高电压穿越的可靠性。  相似文献   

19.
针对常规控制无法满足双馈异步电机(DFIG)低电压穿越技术要求的问题,在常规控制模型的基础上,分析了定、转子故障暂态过程,找到了影响转子过电流和直流母线过电压的原因。并提出一种新的基于电流前馈补偿的控制策略,即在转子侧d轴参考电流上附加一个反映定子磁链暂态衰减的前馈分量;在网侧d轴参考电流上附加一个反映两侧功率变化的前馈分量。最后,在PSCAD/EMTDC平台下,搭建仿真模型,通过对在电网电压跌落时,控制方案改进前后运行结果的仿真对比,验证了所提改进控制策略的有效性。  相似文献   

20.
讨论了电网电压骤降下双馈感应风电(DFIG)系统的低压穿越控制策略和保护方案。采用计及电网电压变化的DFIG数学模型,建立了LVRT控制模型,通过仿真详细研究了Crowbar投切策略,仿真结果验证了Crowbar电路以及控制策略的有效性,表明Crowbar电路能有效抑制转子过电流、直流母线过电压以及电磁转矩的振荡,并可在故障时向电网注入无功电流以帮助电网电压的恢复,使DFIG实现低电压穿越。测量结果表明了这种控制方式能使DFIG在电压跌落故障下实现不间断运行,有效提高了DFIG风电机组运行的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号