首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Intermetallics》2007,15(3):382-395
The effects of alloying on the microstructures, solidification path, phase stability and oxidation kinetics of Nbss/Nb5Si3 base in situ composites of the Nb–Ti–Si–Al–Cr–Mo–Hf–Sn system have been investigated in this study. All the studied alloys are classified as hyper-eutectic Nb silicide base in situ composites and have lower densities compared to nickel-based superalloys. The Nb3Si silicide formed in the Hf-free alloys and transformed to Nbss and αNb5Si3 during heat treatment at 1500 °C. This transformation was enhanced by the addition of Ti. The Nbss and Nb5Si3 were the equilibrium phases in the microstructures of the Hf-free alloys. In the presence of Ti, the βNb5Si3 only partially transformed to αNb5Si3, suggesting that Ti stabilises the βNb5Si3 to lower temperatures (at least to 1300 °C). Furthermore, alloying with Hf stabilised the hexagonal γNb5Si3 (Mn5Si3-type) silicide in the Hf-containing alloys. The addition of Sn promoted the formation of the Si-rich C14 Laves phase and stabilised it at 1300 °C. This is attributed to the Sn addition decreasing the solubility of Cr in the Nbss of the Nb–Ti–Si–Al–Cr–Mo–Hf–Sn system whilst increasing the Si solubility. The Si solubility in the C14 Laves phase was in the range ∼6.6 to 10.5 at%. The lattice parameter of the Nbss in each alloy increased after heat treatment signifying the redistribution of solutes between the Nbss and the intermetallic phases. The oxidation resistance of the alloys at 800 °C and 1200 °C increased significantly by alloying with Ti and Sn. Pest oxidation behaviour was exhibited by the Nb–18Si–5Al–5Cr–5Mo (as cast), Nb–24Ti–18Si–5Al–5Cr–5Mo (as cast), Nb–24Ti–18Si–5Al–5Cr–2Mo (heat treated) and Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf (heat treated) alloys at 800 °C. Pesting was eliminated in the alloy Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf–5Sn at 800 °C, indicating that the addition of Sn plays an important role in controlling the pest oxidation behaviour at intermediate temperatures. The oxidation behaviour of all the alloys at 800 °C and 1200 °C was controlled by the oxidation of the Nbss and was sensitive to the area fraction of Nbss in the alloy.  相似文献   

2.
Static oxidation in air was performed on Nb–20Cr–20Si–5Al alloy at high temperatures ranging from 700 to 1400 °C. Pesting occurred at 700 °C while internal oxidation took place at 1300 and 1400 °C where Al2O3 initiated at the interface between NbCr2 and Nb9Cr3Si2 phases. Phases present were Nb5Si3, NbCr2, Nb solid solution and Nb9Cr3Si2 depending on the temperature. The aluminium content on each of the phases was analyzed. Al content in Nb9Si2Cr3 has been found to be as high as 5–6 atomic percent. SEM, EDS and XRD techniques were utilized in order to characterize the specimens.  相似文献   

3.
The effects of Hf, Mo and W on the microstructure and hardness of as cast and heat treated (1500 °C/100 h) Nb–20Si–5Hf–5W (YG5), Nb-20Si–5Mo–3W (YG6) and Nb–20Si–5Hf–5Mo–3W (YG8) alloys were studied. The macrosegregation of Si was strong in the as cast alloy YG6 and decreased in the order of the synergy of alloying elements as follows (Mo + W), (Hf + W) and (Hf + Mo + W). All three alloys were contaminated by oxygen. The phases present in the as cast alloys YG5, YG6 and YG8 were the Nbss, Nb5Si3 and HfO2, Nbss, Nb3Si, and Nb5Si3 and Nbss, Nb5Si3 and HfO2 respectively, with a lamellar Nbss + Nb5Si3 microstructure formed in all three alloys. In the as cast alloys YG5 and YG6 there were Nbss grains with no Si content. There was microsegregation of Hf and W in the Nbss in the as cast alloy YG8 and microsegregation of Hf in Nb5Si3 in the as cast and heat treated alloys YG5 and YG8. It is concluded that the concentrations of Si and refractory metal (RM) in the Nbss depend on the synergy of RMs with/without Hf. The Nbss with no Si and Nb5Si3 were present in all three heat treated alloys and HfO2 was formed in the heat treated alloys YG5 and YG8 via the consumption of the Hf in the Nbss. The stability of the Nbss + Nb5Si3 lamellar microstructure decreased in the order of the heat treated alloys YG5, YG8 and YG6. In the presence of Hf the transformation of βNb5Si3 to αNb5Si3 was enhanced. It is concluded that the equilibrium microstructures of the alloys consist of the Nbss with no Si and αNb5Si3 phases. Alloying with Hf caused reduction of the hardness of the alloys YG5 and YG8 after heat treatment.  相似文献   

4.
The eutectic alloy Al3(Nb,Cr) + Cr(Al,Nb) forms an in situ composite and the Al3Nb presents high specific strength and low oxidation rate that may be improved by the combination with other phases. The purpose of this work is to investigate physical, mechanical and oxidation properties of the eutectic alloy. Therefore, Rietveld analysis was carried out for furnace cooled and water quenched samples and oxidation tests were performed on directional solidified samples. Compressive tests were performed for the eutectic alloy and also for the Nb–74.8% Cr–24.6% Al alloy in the as-cast condition. The alloy presents 12.9% Cr(Al,Nb) at room temperature, retained from the transformation Cr(Al,Nb) to Al(Nb)Cr2. The combination of Al3Nb with Cr(Al,Nb) and Al(Nb)Cr2 considerably improves mechanical behaviour, leading the yield strength to 1525 MPa at 800 °C and 925 MPa at 900 °C. The oxidation tests showed the formation of several oxides at all temperatures studied and that from 900 °C on alfa Al2O3 is formed both in air and O2 except under O2 at 1000 °C. It is believed that the Cr(Al,Nb) phase acts as an Al reservoir for the formation of the various Al2O3 scales.  相似文献   

5.
《Intermetallics》2007,15(3):270-281
The effect of Sn addition on the oxidation of the Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf–5Sn (at.%) alloy (JG6) in the as cast (AC) and heat treated (HT) conditions was studied at 800 °C and 1200 °C in static air using thermo-gravimetry and microstructural analysis. The oxidation kinetics, morphology and microstructure of the oxide scale and the microstructure of the bulk of the oxidised alloy were investigated. Oxidation occurred by inward oxygen anion diffusion. The oxidation of JG6 at 800 °C and 1200 °C is compared with the oxidation of Sn-free Nb–Ti–Si–Cr–Al–Mo–Hf alloys and is found to have been improved by the addition of Sn. At 800 °C pest oxidation, which was exhibited by the heat treated Nb–24Ti–18Si–5Al–5Cr–2Mo–5Hf alloy (JG4-HT), was eliminated by alloying with 5 at.% Sn. The elimination of pesting at 800 °C is attributed to the nature of the Nb solid solution in the alloy which consists of Sn-rich, Si-rich and Ti lean solid solution usually surrounded by Sn-poor, Si-poor and Ti-rich solid solution. The oxide scales that formed at 1200 °C on JG6 did not separate from the base metal and consisted of Nb2O5, TiO2, SiO2, HfO2 and TiNb2O7. TiN, instead of TiO2, and the (Nb,Ti)5(Sn1−xSix)3 phase, which is considered as a ternary phase based on Nb5Sn2Si, are formed in the diffusion zone of the alloys JG6-AC and JG6-HT after oxidation at 1200 °C. The formation of these phases in the oxidised alloys JG6-AC and JG6-HT controlled the penetration of oxygen into the base material. The better oxidation performance of JG6-AC compared to JG6-HT at 1200 °C is attributed to the formation of Nb3Sn in the former. It is suggested that the presence of the Sn-poor, Si-poor and Ti-rich Nbss in the microstructure is a key to the formation of the Nb3Sn phase at the scale/diffusion zone interface in the JG6-AC oxidised at 1200 °C.  相似文献   

6.
Titanium aluminide (Ti3Al–Nb) has potential for high-temperature applications because of its low density and high-temperature strength. This research is aimed at improving the high-temperature oxidation resistance of a Ti3Al–Nb alloy by modification of its composition. The oxidation rates of Ti3Al–Nb alloys were measured from 600 to 900°C in air. The oxide layer was examined by X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The experimental results reveal that alloys with added Nb tend to form denser oxide layers and that oxidation rate can be reduced by increasing Nb content (up to 11 at.% in this study), which is in good agreement with other investigators. The only exception is a Ti65Al25Nb10 alloy, which shows better oxidation resistance than the commercial Ti65Al24Nb11 alloy. The oxidation resistance of Ti65Al25Nb10 alloy can also be improved slightly by the addition of small amounts of Si or Cr. An increase in the oxidation resistance of Ti65Al25Nb10 alloy containing Y was observed at 900°C but not at 800°C or below. The parabolic oxidation rate equation is adequate to describe the high-temperature oxidation reaction of the Ti3Al–Nb alloys in the atmosphere.  相似文献   

7.
With a purpose of obtaining light-weight materials of high strength, mixture of aluminum powder and Mg2Si powder at the composition of Al–20mass%Mg2Si2 was mechanically alloyed with addition of oxide (Cr2O3, Fe2O3, MnO2) powders. Mechanical alloying was conducted by using an Attritor-type ball mill under argon atmosphere. The mechanically alloyed powders were consolidated to the P/M materials by vacuum hot pressing and hot extrusion. Solid-state reactions during mechanical alloying and subsequent thermomechanical processing were studied. Their structures and mechanical properties were examined and compared with hyper-eutectic Al–Si based P/M materials. All added oxides were decomposed and aluminide compounds were formed during heating of the extruded P/M materials. Mg2Si was only partially decomposed after heating P/M materials. All the P/M materials of Al–Mg2Si–oxide showed high compressive strength above 900 MPa. Among them, the highest strength of 1090 MPa was obtained for Al–Mg2Si–Fe2O3. Even the P/M material of Al–Mg2Si without oxide addition showed compressive strength of 795 MPa. The Al–Mg2Si based P/M materials showed higher compressive strength and higher ductility than hyper-eutectic Al–Si based P/M materials.  相似文献   

8.
Two bulk Mo-Si-B based alloys (Mo-12Si-10B and Mo-26Nb-12Si-10B (at.%), abbreviated as 0Nb and 26Nb alloy respectively) were fabricated by mechanical alloying and then hot pressing. Comparative studies were carried out on the densification behavior, microstructure, room-temperature fracture toughness, elevated temperature compression and oxidation resistance of these two alloys. The results showed that alloy 0Nb was composed of (Mo), Mo3Si and Mo5SiB2, while alloy 26Nb was free of Mo3Si and had higher (Mo) content and a little γNb5Si3. Compared to the alloy 0Nb, alloy 26Nb presented better compactibility, higher room-temperature fracture toughness (8.84 ± 0.17 vs. 6.77 ± 0.20 MPa·m1/2) and elevated temperature compression strength (851.7 ± 11.7 vs. 644.2 ± 10.2 MPa) but worse oxidation resistance.  相似文献   

9.
The phase equilibria in the Fe–Nb–V ternary system were investigated by means of optical microscopy, electron probe microanalysis and X-ray diffraction. Four isothermal sections in the Fe–Nb–V ternary system at 1000 °C, 1100 °C, 1200 °C and 1300 °C were firstly experimentally established. Present experimental results indicate that: (1) there is a large (Nb, V) continuous bcc solid solution; (2) there are the larger solubilities of V in the FeNb and Fe2Nb phases. The newly determined phase equilibria in this system will provide important support for the development of hydrogen storage materials and microalloyed steels.  相似文献   

10.
The oxidation behavior of a (Mo,W)Si2 composite with boride addition was examined at 300–1000 °C for 24 h in dry O2. The oxidation kinetics was studied using a thermobalance, and the oxide scales were analyzed using a combination of electron microscopy (SEM/EDX, FIB, BIB) and XRD. Accelerated oxidation was found to occur between 500 °C and 675 °C, with a peak mass gain at 625 °C. The rapid oxidation is attributed to the vaporization of molybdenum oxide that leaves a porous and poorly protective silica layer behind. At higher temperature (700–1000 °C) a protective scale forms, consisting of a dense SiO2/B2O3 glass.  相似文献   

11.
The oxidation behavior of three Ti3-Al-Nb alloys: Ti-25Al-11Nb, Ti-24Al-20Nb, and Ti-22Al-20Nb was investigated in the temperature range of 700–900°C in air. The uncoated alloy Ti-25Al-11Nb showed the lowest weight gain with nearly parabolic oxidation rate; while the other two alloys had much higher weight gain, accompanied by excessive oxide scale spalling. The scale analysis, using XRD, SEMIEDAX, and AES revealed that the scale was a mixture of TiO2, Al2O3, and Nb2O5 with the outer layer rich in TiO2. The effect of variation in Al and Nb content on the oxidation behavior is discussed. A decrease in Al content of the alloy adversely affects the oxidation resistance; and it seems that a Nb content as high as 20 at.% is also not beneficial. Hence these alloys, especially Ti-24Al-20Nb and Ti-22Al-20Nb, should not be used in the as-received condition above 750°C. An attempt was made to improve the oxidation resistance of these alloys by pack aluminizing which led to the formation of an Al rich TiAl3 surface layer doped with Nb. The coating process was gaseous-diffusion controlled with a parabolic Al deposition rate. The weight gains for the aluminized alloy specimens oxidized at 900°C in air were much lower than that of the uncoated specimens. The weight gains were further decreased in the case of Si-modified aluminized specimens. The scale analysis revealed an alumina-rich scale with some amount of titania doped with Nb. The improvement in the oxidation resistance of the pack-aluminized alloys at 900°C is attributable to the formation of the alumina-rich oxide scale. The addition of Si to the aluminizing pack seems to promote further the growth of an alumina-rich scale by lowering the oxygen partial pressure in the system.  相似文献   

12.
An Nb-Silicide in situ composite with a nominal composition of Nb-16Si-10Ti-10Mo-5Hf (at. %) was fabricated by mechanical alloying followed by hot-pressing sintering. The microstructure consisted of an Nb solid solution, Nb5Si3 and a small amount of Nb3Si. This in-situ composite exhibited good balance of strength between ambient temperature and high temperatures; the ultimate tensile strength was 413 and 496 MPa at room temperature and 1200 °C, respectively. The tensile fracture behavior was dominated by cleavage of the Nbss and Nb5Si3 at 1200 °C and lower temperatures. However, the fracture behavior was governed by ductile rupture of Nbss at 1300 °C and higher temperature, which was ascribed to both the increased ductility of Nbss and the decreased interface strength. At 1400 °C and higher temperature, the material exhibited extensive plasticity or superplasticity; the dominant deformation mechanism was grain boundary sliding at 1400 °C and higher temperature.  相似文献   

13.
《Intermetallics》2007,15(1):69-76
The phase stability and microstructures of Nbss/Nb5Si3 based in situ composites alloyed with Hf and Sn have been investigated. The Nb5Si3 silicide in the β and γ forms was the primary phase in the Nb–24Ti–18Si–5Cr–5Al–5Hf–2Mo and Nb–24Ti–18Si–5Cr–5Al–5Hf–5Sn–2Mo alloys studied in this work. In the as cast alloys, the formation of the Nb3Si phase was suppressed by the addition of Hf. The structure of the Nb5Si3 phase was mainly affected by the Hf addition. The Hf-rich regions in the 5–3 silicide probably corresponded to the γNb5Si3. This silicide was stable up to 1500 °C in the presence of Hf. The Ti solubility in the Hf-rich Nb5Si3 was higher than that in the Nb5Si3. The Si concentration in the Nb5Si3 phase increased slightly and shifted closer to its stoichiometric composition by the addition of Hf. The alloying elements Hf and Sn preferentially substituted for Nb in the Nb5Si3 and Nbss, respectively. The Sn addition had a significant effect on the niobium solid solution leading to the formation of Sn-rich and Sn-poor parts in the solid solution in the as cast microstructure. In the presence of Sn, the Si solubility in Nbss increased considerably whilst the Cr solubility decreased. As a result of the decrease of the Cr solubility in Nbss, the Sn addition promoted the formation of Si-rich C14 Cr2Nb Laves phase and stabilised this phase at 1300 °C. TiN and HfO2 were formed below the surfaces of the heat treated alloys.  相似文献   

14.
Ti46Al7Nb alloy has been used as the research substrate material for the deposition of water-based slurries containing Al and Si powders. The diffusion treatment has been carried out at 950 °C for 4 h in Ar atmosphere. The structure of the silicon-modified aluminide coatings 40 μm thick is as follows: (a) an outer zone consisting of TiAl3 phase and titanium silicides formed on the matrix grain boundaries composed of TiAl3–type Ti5Si3; (b) a middle zone containing the same phase components with the matrix TiAl3 and the silicides Ti5Si3, which formed columnar grains; (c) an inner zone, 2 μm thick, consisting of TiAl2 phase. Cyclic oxidation tests were conducted in 30 cycles (690 h at high temperature) and showed a remarkably higher oxidation resistance of the Ti46Al7Nb alloy with the protective coating in comparison with the uncoated sample.  相似文献   

15.
Ni75Nb12B13 alloys were synthesized by mechanical alloying (MA) of individual Ni, Nb and B components. X-ray investigation showed the formation of Ni (Nb, B) solid solution and amorphous phase at the intermediate stage of milling. Metastable phases formed by MA turned into Ni (Nb), Ni21Nb2B6 and Ni3Nb stable phases during heating up to 720 °C. The exothermal effects on DSC curves were caused with these processes. The disintegration of Ni (Nb, B) solid solution and crystallization of an amorphous phase resulted in the stable phases formation during the milling prolongation as well as after thermal treatment.  相似文献   

16.
The oxidation behavior of (Mo0.85Nb0.15)Si2 single crystals and the influence of Cr-addition were studied focusing on its microstructure dependence. Cr-addition to single-phase C40-structured (Mo0.85Nb0.15)Si2 crystal induced the formation of crystalline silica, leading to slightly larger weight gain during the oxidation test at 1200 °C. Furthermore, Cr-addition to C40/C11b duplex-phase (Mo0.85Nb0.15)Si2 crystal with lamellar structure strongly suppressed the internal oxidation of the C11b phase, resulting in excellent oxidation resistance. C40/C11b lamellae-structured crystals showed better oxidation resistance than the C40-structured crystals.  相似文献   

17.
To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62−x)Nb−18Si−10Mo−10Ti−xW (x=0, 5, 10 and 15 mol.%)in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)5Si3 silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti)5Si3 silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.  相似文献   

18.
《Intermetallics》2006,14(7):832-837
The full understanding of the Nb–Si–Cr ternary system is important for the development of Nb silicide based composites, which show great potential for high temperature applications. There was, however, disparity in experimental observations of phase equilibrium in the vicinity of the Nb-corner. Two kinds of three-phase equilibrium, Nbss+C14+αNb5Si3 and Nbss+CrNbSi+αNb5Si3, in the Nb corner of the Nb–Si–Cr system have been reported in the literature. This work aims to clarify the three-phase equilibrium near the Nb-corner, by studying phase equilibrium in the Nb–18Si–15Cr ingot. Such a composition was chosen with the assistance of CALPHAD calculations to avoid unnecessary load of work. The alloy ingot was prepared by clean melting followed by heat treatment at 1000 and 1500 °C. The C14 Laves phase formed in all the samples and was stable at both temperatures. The results confirmed that Si has the effect of stabilising the C14 Laves phase down to at least 1000 °C. The three-phase equilibrium Nbss+C14+αNb5Si3, instead of Nbss+CrNbSi+αNb5Si3, was observed in this work. The current work demonstrates that ingot metallurgy is necessary to check the reliability of the information obtained about the ternary and higher-order phase diagrams, especially for the regions where the exact phase boundaries are in question. The investigation of the selected alloy was greatly helpful to clarify the confusion of the three-phase field near the Nb corner in the Nb–Si–Cr ternary system. The work confirmed the CALPHAD prediction of phase equilibrium near the Nb corner, showing the power to combine phase diagram predictions with experimental work for cost effective alloy development.  相似文献   

19.
采用机械合金化和放电等离子烧结方法制备了Nb-16Si-10Ti-10Mo-5Hf原位复合材料。采用不同温度下的拉伸试验评价了其力学性能,结合其不同温度下的断口形貌研究了其变形机制。结果表明,复合材料的微观组织由Nbss(铌固溶体)、金属间化合物Nb_5Si_3和少量的Nb_3Si相组成,晶粒呈等轴状。室温和1200℃抗拉强度分别为413和496 MPa。从室温到1200℃拉伸断裂方式为Nb5Si3相解理脆性断裂,1200℃拉伸延伸率仅为1.2%;然而,在1300℃拉伸试验中,其拉伸延伸率为27%,这归因于Nbss延性的增加和界面/晶界强度的降低;在1400℃和更高的温度,材料具有极大的塑性或超塑性,塑性变形机制由晶内滑移转变为晶界滑移。晶界滑移在三叉晶界处产生的应力集中通过软化的Nbss协调而释放,从而避免了早期断裂。  相似文献   

20.
The oxidation of two Co–Nb alloys containing 15 and 30 wt.% Nb has been studied at 600–800° C in H2–CO2 mixtures providing an oxygen pressure of 10–24 atm at 600°C and 10–20 atm at 700 and 800°C, below the dissociation pressure of cobalt oxide. At 600 and 700°C both alloys showed only a region of internal oxidation composed, of a mixture of alpha cobalt and of niobium oxides (NbO2 and Nb2O5) and at 700°C also the double oxide CoNb2O6, which formed from the Nb-rich Co3Nb phase. No Nb-depleted layer formed in the alloy at the interface with the region of internal oxidation at these temperatures. Upon oxidation at 800°C a transition between internal and external oxidation of niobium was observed, especially for Co–30Nb. This corrosion mode is associated with the development of a single-phase, Nb-depleted region at the surface of the alloy. The corrosion mechanism of these alloys is examined with special reference to the effect of the low solubility of niobium in cobalt and to the relation between the microstructures of the alloys and of the scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号