首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为了解决数据流动态聚类问题,提出了一种概率化的基于代表点聚类算法.首先,基于概率框架给出了AP(affinity propagation)聚类算法和EEM(enhanced α-expansion move)聚类算法的联合目标函数,提出了概率化的基于代表点聚类算法;其次,根据样本与其代表点之间的概率,提出了基于概率的漂移动态α-expansion数据流聚类算法.该算法使得新数据的代表点尽可能贴近原始数据的代表点,从而提高聚类性能;另一方面,考虑到原始数据与新数据的相似性,该算法能够处理2种漂移过程中的动态聚类问题:1)新数据与原始数据分享部分数据,其余数据与原始数据相似;2)没有相同的数据,新数据与原始数据有相似关系.在人工合成数据集D31,Birch3以及真实数据集Forest Covertpye,KDD CUP99的实验结果均显示出了所提之算法能够处理数据流聚类问题,并保证聚类性能稳定.  相似文献   

2.
随着传感器数据、互联网数据、金融数据(股票价格等)、在线拍卖以及事务日志(网站访问日志、电话记录日志)等的不断产生,数据流成为了主要的数据形式.流挖掘是数据库领域的研究热点,有很大的应用前景.本文首先简单介绍了数据流与聚类分析的概念,阐述了数据流中的聚类分析及其要求,详细说明了主要传统聚类方法的演变及各自代表性流数据聚类算法,并对其进行总结.在本文的最后,对流数据挖掘的前景做出展望.  相似文献   

3.
许多应用程序会产生大量的流数据,如网络流、web点击流、视频流、事件流和语义概念流。数据流挖掘已成为热点问题,其目标是从连续不断的流数据中提取隐藏的知识/模式。聚类作为数据流挖掘领域的一个重要问题,在近期被广泛研究。不同于传统的静态数据聚类问题,数据流聚类面临有限内存、一遍扫描、实时响应和概念漂移等许多约束。本文对数据流挖掘中的各种聚类算法进行了总结。首先介绍了数据流挖掘的约束;随后给出了数据流聚类的一般模型,并描述了其与传统数据聚类之间的关联;最后提出数据流聚类领域中进一步的研究热点和研究方向。  相似文献   

4.
本文提出的基于网格的数据流聚类算法,克服了算法CluStream对非球形的聚类效果不好等缺陷,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。  相似文献   

5.
提出一种基于滑动窗口的概率数据流聚类方法PWStream。PWStream采用聚类特征指数直方图保存最近数据元组的信息摘要,在允许的误差范围内删除过期的数据元组;并针对数据流上概率元组提出强簇、过渡簇和弱簇的概念,设计了一种基于距离和存在概率的簇选择策略,从而可以发现更多的强簇。理论分析和实验结果表明,该方法具有良好的聚类质量和较快的数据处理能力。  相似文献   

6.
为发现分布式数据流下不同形状的聚簇,提出了一种基于代表点的聚类算法。算法首先在代表点定义的基础上,提出环点的概念以及迭代查找密度相连环点的算法,在此基础上生成远程站点的局部模型;然后在协调站点设计合并局部模型,生成全局聚簇的算法。通过真实数据集与仿真数据集的实验表明,算法使用代表点能够发现不同形状的聚簇并显著降低数据传输量,同时通过测试—更新局部模型算法避免了频繁发送数据。  相似文献   

7.
数据流聚类分析是数据流挖掘的重要手段之一.为满足数据流不断演化及高速处理的要求,提出一种领域覆盖的数据流聚类算法NCStream(Stream clustering algorithm based on Neighborhood Covering).该算法通过建立领域覆盖模型,详细定义和分析了数据流演化过程中覆盖簇调整、创建、删除和合并的行为操作,并同时对覆盖簇的聚类特征予以在线维护.与同类算法相比,NCStream算法无需事先指定聚类簇数,避免参数设置对聚类结果造成的影响,而且易于建立空间索引,因此能够更加有效地反映数据流的演化情况.实验采用无线电实际监测数据集构造数据流,实验结果表明NCStream算法在聚类形状、聚类质量以及处理时间方面具有更好的性能.  相似文献   

8.
基于数据流的任意形状聚类算法   总被引:36,自引:4,他引:36  
朱蔚恒  印鉴  谢益煌 《软件学报》2006,17(3):379-387
详细分析了数据流聚类算法CluStream的不足之处,如对非球形的聚类效果不好、对周期性数据的聚类变化反映不完整等,并针对这些不足之处提出了一种采用空间分割、组合以及按密度聚类的算法ACluStream.实验结果表明,ACluStream在准确度和速度上都比CluStream有较大的提高.  相似文献   

9.
随着传感器数据、互联网数据、金融数据(股票价格等)、在线拍卖以及事务日志(网站访问日志、电话记录日志)等的不断产生,数据流成为了主要的数据形式。流挖掘是数据库领域的研究热点,有很大的应用前景。本文首先简单介绍了数据流与聚类分析的概念,阐述了数据流中的聚类分析及其要求,详细说明了主要传统聚类方法的演变及各自代表性流数据聚类算法,并对其进行总结。在本文的最后,对流数据挖掘的前景做出展望。  相似文献   

10.
实时数据流聚类是目前国际数据库和数据管理领域的新兴研究热点.综述了实时数据流聚类的最新研究进展,在介绍实时数据流聚类的相关理论和常用技术的基础上,对现有各种代表性算法的优势和不足进行了系统地分析,从处理速度、聚类形状、演化分析、高维性及噪声健壮性5个方面对算法的性能进行了比较.探讨了基于聚类的实时数据流演化分析方法及其局限性.最后展望了将来可能的研究方向.  相似文献   

11.
进化数据流中基于密度的聚类算法   总被引:1,自引:1,他引:0  
分析当前数据流聚类算法的优点及不足,提出一种新的进化数据流中基于密度的聚类算法——Sdstream算法,该算法能够分析并处理大规模进化数据流,利用真实数据集和仿真数据集对其进行性能测试,实验结果表明,该算法具有良好的适用性、有效性和可扩展性,能够取得较高的聚类效果。  相似文献   

12.
一种混合属性数据流聚类算法   总被引:5,自引:0,他引:5  
杨春宇  周杰 《计算机学报》2007,30(8):1364-1371
数据流聚类是数据流挖掘中的重要问题.现实世界中的数据流往往同时具有连续属性和标称属性,但现有算法局限于仅处理其中一种属性,而对另一种采取简单舍弃的办法.目前还没有能在算法层次上进行混合属性数据流聚类的算法.文中提出了一种针对混合属性数据流的聚类算法;建立了数据流到达的泊松过程模型;用频度直方图对离散属性进行了描述;给出了混合属性条件下微聚类生成、更新、合并和删除算法.在公共数据集上的实验表明,文中提出的算法具有鲁棒的性能.  相似文献   

13.
数据流具有数据量无限且流速快的特点.针对上述问题,本文讨论了基于频繁模式的数据流聚类算法.本算法应用改造后的FP-Tree,更新树时增加一个数组减少了遍历树的时间,使算法的效率得到了很大的提高.  相似文献   

14.
一种基于密度的空间数据流在线聚类算法   总被引:2,自引:0,他引:2  
于彦伟  王沁  邝俊  何杰 《自动化学报》2012,38(6):1051-1059
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial datastream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033 ms.  相似文献   

15.
传统的基于网格的数据流聚类算法在同一粒度的网格上进行聚类,虽然提高了处理速度,但聚类准确性较低。针对此问题,提出一种新的基于双层网格和密度的数据流聚类算法DBG Stream。在2种粒度的网格上对数据流进行聚类,并借鉴CluStream算法的思想,将聚类过程分为2个阶段。在线过程中利用粗粒度的网格单元形成初始聚类,离线过程中在细粒度网格单元上,对位于簇边界的网格单元进行二次聚类以提高聚类精度,并实现了关键参数的自动设置,通过删格策略提高算法效率。实验结果表明,DBG Stream算法的聚类精确度较D Stream算法有较大提高,有效解决了传统基于网格聚类算法的聚类精度较低的问题。  相似文献   

16.
高维数据流的自适应子空间聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选簇,只在相应的子空间内计算新来数据点到候选簇质心的距离,减少了聚类时被检查微簇的数目,将形成的微簇存储在金字塔时间框架中,使用时间衰减函数删除过期的微簇;当数据流量大时,根据监测的系统资源使用情况自动调整界限半径和簇选择因子,从而调节聚类的粒度。实验结果表明,该算法具有良好的聚类质量和快速的数据处理能力。  相似文献   

17.
基于滑动窗口的支持泛在应用的流聚类挖掘算法   总被引:2,自引:0,他引:2  
近年来,泛在数据流挖掘逐渐成为数据挖掘发展的新热点,它具有在有限的资源上去挖掘无限的数据流,并可随时随地返回挖掘结果的特点,对此,本文提出一种基于滑动窗口的流聚类算法;该方法将一个滑动窗口分成n个大小相等的窗口单元,基于窗口单元进行增量式的知识相关性的挖掘,提高了流挖掘的效率;当窗口滑动时,通过衰变函数衰减当前滑动窗口内的第一个窗口单元的挖掘结果,并在当前滑动窗口挖掘结果中将其剔除,实现下一滑动窗口的增量式挖掘.  相似文献   

18.
本文提出了一种基于自适应网格划分的数据流聚类算法。通过采用网格的自适应划分,对传统的基于密度网格的数据流聚类算法,以均衡划分网格的方法进行改进,使网格的划分更加合理,减少硬性划分对结果可能造成的影响,提高了硬性划分边界的精度。同时采用剪枝方法,减少了算法的执行时间。最后,通过实验验证了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号