共查询到20条相似文献,搜索用时 11 毫秒
1.
为实现节能降耗,开发了多种强化沸腾传热的高效换热管。以水为工质,在0.1MPa下对垂直光管、烧结多孔管和T槽管进行了池沸腾传热实验研究,并分析了沿管子轴向的温度分布。实验结果表明,烧结多孔管与T槽管能显著降低起始沸腾过热度、强化沸腾传热:烧结多孔管和T槽管的起始沸腾过热度比光管的低1.5K左右;烧结多孔管和T槽管的核态沸腾传热系数分别为光管的2.4~3.2倍和1.6~2.0倍。此外,烧结多孔管和T槽管能降低相同热流密度下的壁面温度,且有利于降低管子轴向的温差。 相似文献
2.
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary
mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure
liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate
pool boiling heat transfer of pure liquids on smooth tubes is developed. 相似文献
3.
INTanDUCTI0NBoilingheattransferandcriticalheatflux(CHF)inaconfinednarrowspacehavebeenstudiedexperi-melltallybyanumberofinvestigatorsinthepastfewdecades.However,thereisnoanypopularlyacceptedmodelintheheattransferinnarrowspaceboiling,althoughsomepopularknowledgeabouttheboilingheattransferinthenarrowspacehavebeenacceptedbymanyresearchers.Theknowledgecanbecon-cludedasthatthenucleateboilingheattransferisenhancedatlowheatfluxregionanddeterioratedathighheatfiuxregi0nespeciallyatCHF.Theenhanceme… 相似文献
4.
Yoshihiro Iida Toshikatsu Tsuyuki Takao Mashima Takeo Takashima Kunito Okuyama 《亚洲传热研究》2002,31(1):28-41
This paper presents a series of experimental results on a passive augmentation technique of boiling heat transfer by supplying solid particles in liquid. A cylindrical heater 0.88 mm in diameter is placed in saturated water, in which a lot of mobile particles exist, and the nucleate and film boiling heat transfer characteristics are measured. Particle materials used were alumina, glass, and porous alumina, and the diameter ranged from 0.3 mm to 2.5 mm. Particles are fluidized by the occurrence of boiling without any additive power, and the heat transfer is augmented. The maximum augmentation ratio obtained in this experiment reaches about ten times the heat transfer coefficient obtained in liquid alone. The augmentation ratio is mainly affected by the particle material, diameter, and the height of the particle bed set at no boiling condition. The augmentation mechanism is discussed on the basis of the experimental results. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 28–41, 2002 相似文献
5.
Zhaofu SUN Maoqiong GONG YanfengQI Zhijian LI JianfengWU Technical Institute of Physics Chemistry Chinese Academy of Sciences Beijing China Graduate School of the Chinese Academy of Sciences Beijing China 《热科学学报(英文版)》2004,13(3):259-263
Heat transfer coefficients in nucleate boiling on a smooth flat surface were measured for pure fluids of R-134a, propane, isobutane and their binary mixtures at different pressure from 0.1 to 0.6 MPa. Series of experiments with different heat flux and mixture concentrations were carried out. The influences of pressure and heat flux on the heat transfer coefficient for different pure fluids were studied. Isobutane and propane were used to make up binary mixtures. Compared to the pure components, binary mixtures show lower heat transfer coefficients. This reduction was more pronounced as the heat flux increasing. Several heat transfer correlations are obtained for different pure refrigerants and their binary mixtures. 相似文献
6.
7.
8.
An experimental study has been carried out for estimating surface temperature and heat flux during both a transient heating process from nucleate boiling to film boiling and a cooling process in the reverse direction. Experiments were at atmospheric pressure, and calculations used a newly developed inverse solution. Three different materials, gold, copper, and brass, were employed to make clear the effect of thermal properties on the boiling curves in the transient region including the maximum and minimum heat fluxes. It was determined that the histories of surface temperature and heat flux for the transition boiling region during either heating or cooling process can be tracked well. The experiment shows that hysteresis exists in the heating and cooling processes for the transition region while no hysteresis exists in the nucleate boiling region, except that the maximum heat fluxes reached during the heating and cooling processes are much different. It was found that the characteristics for the heating process are minimally influenced by thermal properties, while characteristics of the cooling process are greatly affected. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 20–34, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20097 相似文献
9.
通过对五种尺寸的窄空间试验元件分别以水和乙醇做工质进行实验。研究了窄空间间距、窄空间尺寸、不同工质及不同热流密度对窄空间沸腾性能的影响。结果表明:当窄空间尺寸与热流通等因素组合恰当时。其换热系数可比大空间池沸腾提高3~6倍;临界热流密度有所降低。 相似文献
10.
The pool boiling characteristics of dilute dispersions of alumina nanoparticles in water were studied. Consistent with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). During experimentation and subsequent inspection, formation of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly changes surface texture of the heater wire surface which could be the reason for improvement in the CHF value. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20301 相似文献
11.
12.
Experimental studies were made on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic refrigerant binary mixtures at pressures of 0.25 to 0.7 MPa and at heat fluxes up to CHF. The boiling features of the mixtures and the single-component substances were observed by photography. The relationship between the boiling behavior and the reduction of heat transfer coefficients in binary mixtures is discussed in order to propose a correlation useful for predicting the present experimental data over a wide range of low to high heat fluxes. It is shown that the correlation is applicable to alcoholic mixtures. The physical meaning of k, which was introduced to evaluate the effect of heat flux on the reduction of a heat transfer coefficient, is clarified based on measured nucleate pool boiling heat transfer data and visual observations of the boiling features. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 535–549, 1998 相似文献
13.
Qincheng Bi Tianshou Zhao Yajun Guo Tingkuan ChenState Key Laboratory of Multiphase Flow in Power Engineering Xi''''an Jiaotong University Xi''''an ChinaDepartment of Mechanical Engineering The Hong Kong University of Science & Technology Hong Kong ChinaSchool of Environmental Municipal Administration Engineering Xi''''an University of Architecture & Technology Xi''''an China 《热科学学报(英文版)》2002,11(4):303-307
To investigate the size effect on the characteristics of boiling heat transfer, boiling behavior of FC-72 in heated vertical miniature circular tubes immersed in a liquid pool was experimentally studied. Two AISI 304 stainless steel tubes with inner diameters of 1.10 mm and 1.55 mm correspondingly, were heated by swirled Ni-Cr wire heaters and sealed in Lucite blocks by silicon adhesive. Both the top and the bottom ends of the circular test sections were open to the liquid pool. The boiling curves and heat transfer coefficients were obtained experimentally. The boiling behaviors at the outlets of the miniature tubes were also visualized with a digital video camera. Experimental results show that the tube geometry has a significant effect on the boiling characteristics. Vapor blocking at the outlet of the smaller circular tube with a diameter of 1.10 mm caused severe boiling hysteresis phenomena. The CHF decreased with reducing in tube size. 相似文献
14.
Nucleate pool boiling heat transfer data of the HFC23/CFC13 system have been systematically measured in awide range of pressures and heat fluxes.The experimental results are also compared with the measured data ofR508A and R508B.It is found that the heat transfer coefficient of R503(HFC23/CFC13=0.511/0.489)is higherthan that of R508A and R508B.Furthermore,the measured data were compared with the predicted results withthree well-known correlations.Correlation by Fujita and Tsutsui can provide acceptable results.Most of the datafall within±20% of this correlation. 相似文献
15.
Heat transfer coefficients were measured during pool boiling of binary mixtures on a heated wire hung horizontally and bubble behavior was simultaneously captured with a high‐speed video camera. The experiment was carried out at a pressure of 0.4 and 0.7 MPa for the whole range of mass fractions in a binary mixture of R22/R11. We clarified the change in bubble behavior and heat transfer by measuring the bubble departure diameter, frequency and growth rate on the basis of the video images. Furthermore, we discussed the relationship between the bubble behavior and the boiling heat transfer coefficient in the binary mixtures. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(7): 449–459, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20087 相似文献
16.
17.
A composite heating surface composed of materials with different thermal conductivities can be expected to enhance heat transfer in nucleate boiling. This is because the end surface, with higher conductivity, will attain a higher temperature and as a result will serve to provide preferential nucleation sites. To confirm this idea, several composite surfaces were fabricated by uniaxially imbedding thin copper cylinders in the heat flow direction on a stainless steel circular plate 30 mm in diameter and 5 mm thick. The imbedded copper cylinders ranged from 1 mm to 4 mm in diameter and one to 77 in number. The heat transfer performance of these composite surfaces was investigated for pool boiling of saturated water at atmospheric pressure. It was confirmed that the copper cylinder surfaces exposed to water functioned as local hot spots to initiate preferential nucleate boiling, leading to higher boiling heat transfer coefficients than those on a homogeneous stainless steel surface. The measured void fraction above the heating surface verified intensive bubble generation on the surface of the copper cylinders. This situation continued up to a certain heat flux level and was then followed by nucleation on the mother surface of stainless steel around the copper cylinders. A numerical analysis of heat conduction within a composite wall simulated the temperature distribution within the wall and the variation in surface heat flux at the time of boiling incipience. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 216–228, 1998 相似文献
18.
19.
Nucleate boiling heat transfer coefficients were measured on a horizontal heated wire during the pool boiling of non‐azeotropic mixtures of ammonia/water. The experiment was carried out at pressures of 0.4 and 0.7 MPa, at heat fluxes below 2.0 × 106 W/m2, and over a range of mass fraction. The heat transfer coefficients in the mixtures were smaller than those in single‐component substances. No existing correlation is found to predict boiling heat transfer coefficients over the range of mass fraction of interest. In the mixtures of the ammonia/water, the heats of dilution and dissolution were generated near a liquid surface while vapor with a rich concentration of ammonia was condensed and then was diffused into the bulk liquid; while in most other mixtures, little heat was generated during any dilution and dissolution. In relation to the heat generated, the effect of the heats of dilution and dissolution on pressure and temperature in a system (pressure vessel) is shown herein. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 272–283, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10034 相似文献