首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统固相烧结法,在铌酸钾钠陶瓷基体中掺入Sr、Ba、Bi和Ti元素,制备了(1-x)(K0.5Na0.5)-NbO3-x(Sr0.4Ba0.6)0.7Bi0.2TiO3((1-x)KNN-xBSBT)(0.01≤x≤0.04)陶瓷。XRD测试结果表明,(1-x)KNNxBSBT(0.01≤x≤0.04)为纯钙钛矿相;介电温谱表明,(1-x)KNN-xBSBT为弛豫铁电体;0.97KNN-0.03BSBT陶瓷介电常数具有很好的温度稳定性,在室温至400℃介电常数变化很小。  相似文献   

2.
采用固相反应方法制备Bi0.5(Na0.8K0.2-x Lix)0.5TiO3无铅压电陶瓷。研究该体系陶瓷的组成变化及烧结工艺对压电陶瓷的相组成、显微结构及电性能的影响。结果表明,混合原料的平均粒径在2μm左右,粒度呈正态分布。热分析确定了混合原料的合成温度为900℃。XRD分析表明,900℃预烧温度下,合成粉体为ABO3的钙钛矿结构,且为铁电四方相结构。SEM表明,组成在x=0.06,烧结温度为1 160℃时,能够获得烧结良好且致密度较高的陶瓷,该组成的陶瓷的电性能具有最佳值,εT33/ε0=1 160、tanδ=0.029、d33=195pC/N、kp=0.407。  相似文献   

3.
使用传统的固相烧结法制备了(1-x)Bi_(0.5)Na_(0.5)TiO_3-BaTiO_3无铅压电陶瓷,研究了BaTiO3对陶瓷介电﹑压电﹑铁电及热释电性能的影响。X射线衍射仪(XRD)及扫描电子显微镜(SEM)分析表明,适量的BaTiO3能完全固溶到Bi0.5Na0.5TiO3陶瓷中,当BaTiO3含量为0.05x0.09时,(1-x)Bi_(0.5)Na_(0.5)TiO_3-BaTiO_3陶瓷处于三方四方两相共存状态,形成了准同型相界(MPB)。在MPB处,陶瓷的介电﹑压电、铁电及热释电性能均达到最佳:d33~170pC/N,εr~869,kp~27%,Pr~32.91μC·cm-2,Ec~26.5kV·cm-1,p~2.01×10-8Ccm-2·℃-1,FV~1.81×10-2 m2·C-1,FD~0.82×10-5Pa-1/2。对阻抗频率特性的研究发现,BaTiO3的加入能使材料性能"软化"。研究还发现适量BaTiO3的加入能促使BNT压电陶瓷的退极化温度向高温方向移动,93Bi0.5Na0.5TiO3-7BaTiO3陶瓷在80℃开始由铁电相向反铁电相转变。  相似文献   

4.
采用传统固相法制备了(0.995-x)K_(0.48)Na_(0.52)NbO_3-0.005BiCoO_(3-x)Bi_(0.5)Na_(0.5)ZrO_3(KNN-0.005BCxBNZ,x=0~0.045)系无铅压电陶瓷,研究了Bi_(0.5)Na_(0.5)ZrO_3的引入对KNN基无铅压电陶瓷相结构和电学性能的影响。研究结果表明,BNZ的引入能够同时使KNN陶瓷的正交-四方相变温度(TO-T)向低温方向移动,三方-正交相变温度(TR-O)向高温方向移动。当0.03x≤0.04时,陶瓷在室温附近正交-四方(O-T)相和三方-正交(R-O)相(即R-O-T相)共存,使陶瓷的电学性能得到大幅提高;当x=0.035时,陶瓷具有最优的电学性能:d33=320pC/N,kp=52%,Pr=19.7μC/cm2,εr=1 400,tanδ=2.5%,TC=335℃。  相似文献   

5.
采用传统固相法制备了(1-x)K_(0.48)Na_(0.52)NbO_(3-x)Bi_(0.46)Nd_(0.04)(Na_(0.82)K_(0.18))_(0.5)ZrO_3(KNN-xBNNKZ,x=0~0.07)系无铅压电陶瓷,研究了Bi_(0.46)Nd_(0.04)(Na_(0.82)K_(0.18))_(0.5)ZrO_3的引入对KNN基无铅压电陶瓷相结构和电学性能的影响。研究结果表明,BNNKZ的引入能够让KNN陶瓷的正交-四方相变温度(TO-T)向低温方向移动,同时三方-正交相变温度(TR-O)向高温方向移动。当0.04x≤0.06时,成功构建出R-T相共存,大幅提高了陶瓷体系的电学性能,陶瓷在x=0.05时具有最优的电学性能:d33=308pC/N,kp=43%,Pr=23.45μC/cm2,εr=1 205,tanδ=3.8%,TC=331℃。  相似文献   

6.
采用传统陶瓷工艺制备了(1-x)BaTiO_(3-x)Ag_(0.9)Li_(0.1)NbO_3(BT-xALN,0.005≤x≤0.04)系陶瓷,研究了ALN含量的变化对BT-xALN系陶瓷的显微结构、相结构和电性能的影响。结果表明,ALN的引入使陶瓷的晶粒尺寸有所减小。当x≤0.02时,BT-xALN陶瓷均形成了纯的钙钛矿相,表明ALN与BT形成了固溶体;当x=0.01~0.02时,陶瓷存在四方-伪立方相界。陶瓷的压电常数d33和介电常数εr随x增加均先增大后减小。d33在x=0.0075时达到最大值115pC/N,εr在x=0.025时达到最大值3 880;但剩余极化强度Pr随x增加逐渐降低。此外,掺入ALN后陶瓷的居里温度有所降低。  相似文献   

7.
采用传统工艺制备了(Na0.84K0.16)0.5Bi0.5TiO3压电陶瓷,研究掺杂离子Sb3+对(Na0.84K0.16)0.5Bi0.5TiO3微观结构和电性能的影响。结果表明烧结温度在1160℃时,样品密度达到最大值5.85g/cm3;X射线衍射(XRD)分析所有陶瓷样品均为钙钛矿相,Sb2O3的掺杂只改变晶胞体积或产生铋离子空位或钠离子空位,不形成异相;掺杂量在0.4%~0.6%时介电常数先增加后减小,介电损耗呈现增大趋势;掺杂0.5%的Sb2O3时,d33最大为142pC/N。  相似文献   

8.
以NaCl-KCl熔盐法制备出了片状的Bi4Ti3O12微晶模板,选用此模板分别采用干法和湿法流延工艺结合RTGG技术制备了(Na0.84K0.16)0.5Bi0.5TiO3无铅压电织构陶瓷。研究了不同工艺条件下获得的织构陶瓷烧结行为、织构度、显微组织结构和电性能的变化规律。结果表明,(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷的烧成温度范围只有10~20℃,其介电性能、压电性能呈现明显的各向异性,沿垂直于流延方向织构陶瓷的各种电学性能均明显优于平行于流延方向的电学性能,两种流延方法在1150℃烧结所得的(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷在显微组织结构和电性能方面均表现出最强的各向异性,该织构陶瓷的压电常数d33=134pC/N。  相似文献   

9.
采用传统电子陶瓷制备工艺获得无铅压电陶瓷(1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xLi0.5Bi0.5TiO3(NBT-KBT-xLBT),研究了该材料的相结构、介电、铁电及压电性能。结果表明,NBTKBT中引入LBT形成了单相钙钛矿固溶体,LBT的引入量为0.08≤x≤0.10时,该体系处于准同型相界处;随着LBT的引入量增加,陶瓷的烧结温度显著降低,介电温度异常峰对应的退极化温度Tf向高温方向移动,而铁电-顺电相变峰Tm则向低温方向移动,弛豫铁电相变特征也表现得更为明显,对弛豫相变与A位离子的局域分布不均匀及其在原子尺度上的有序无序排布之间的关联进行了初步探讨;在NBT-KBT体系中引入LBT有助于改善其铁电性能,提高压电活性,矫顽场Ec从14.5kV/cm(x=0.06)降低至12.3kV/cm(x=0.12),在准同型相界处(x=0.10),压电常数d33达到了145pC/N。LBT组分引入到NBT-KBT体系中可获得高压电常数及低矫顽场的无铅压电材料。  相似文献   

10.
采用二次合成法制备了新型0.92[Bi0.5(Na0.7K0.25Li0.05)0.5]TiO3-0.08Ba(Ti,Zr)O3+x(wt%)(质量分数)MnO2体系无铅压电陶瓷,研究了陶瓷的晶相结构、表面形貌、压电介电性能。研究结果表明,制备的陶瓷样品均具有单一钙钛矿结构。MnO2的含量为x=0.003时,得到介电损耗低的压电陶瓷:介质损耗tanδ为0.0361,压电常数d33为155pC/N,机电耦合系数kp为0.26,机械品质因素Qm为202;在1160℃,2h的烧结条件下,能够获得致密的无铅压电陶瓷体。  相似文献   

11.
葛锋  王东哲  李念  张玉碧  陆翠敏  何璧  刘晓峰  敖靖 《功能材料》2012,(Z2):187-189,192
采用传统固相烧结法制备(0.98-x)Bi1/2Na1/2TiO3-xBi1/2K1/2TiO3-0.02Bi(Zn2/3Nb1/3)O3(简称(0.98-x)BNT-xBKT-0.02BZN,其中x=0.1、0.15、0.20、0.25)无铅压电陶瓷,系统研究了不同烧结温度对(0.98-x)BNT-xBKT-0.02BZN陶瓷压电及介电性能的影响。结果表明,压电常数和机电耦合系数都随烧结温度的升高而增大,得出1140℃为最佳烧结温度,其最佳性能如下:d33=43pC/N,Kp=0.2731,ε3T3/ε0=1289.8,tanδ=0.038。  相似文献   

12.
采用传统固相法制备了(Ba0.85Ca0.15)(Ti0.9Zr0.1-x Snx)O3(CBTZS-x)无铅压电陶瓷,研究了不同Sn含量(x=0~0.1)对CBTZS-x陶瓷相结构、介电以及压电性能的影响。实验结果表明:所有样品均为纯钙钛矿结构;随着Sn含量增加,室温下样品逐渐由三方和四方相共存结构转变为四方相结构,且三方-四方相转变温度T R-T和居里温度TC均逐渐减小,当x=0.04时,TR-T更接近于室温,此时表现出优异的压电性能;样品的剩余极化强度Pr和矫顽场Ec随着x增加均呈现出减小的趋势,而相对介电常数εr则逐渐增大。当x=0.04时,CBTZS-x材料的综合性能最佳:d33=665pC/N,kp=55.6%,εr=4520,Pr=12.5μC/cm2,Ec=1.6 kV/cm,表明该陶瓷材料具有很好的应用前景。  相似文献   

13.
周飞  吴浪  吴文娟  滕元成  李玉香 《功能材料》2011,42(2):241-243,247
采用传统陶瓷工艺制备了(0.94-x)Bi0.5Na0.5TiO3-0.06BaTiO3-xLiNbO3(BNBT6-xLN,x=0~0.03)系无铅压电陶瓷,研究了LiNbO3的引入对BNBT6陶瓷微结构、铁电和压电性能的影响.X射线衍射分析表明,各组分均具有纯的钙钛矿结构.掺入适量LiNbO3可使陶瓷的晶粒变得更均...  相似文献   

14.
(1-x)CaTiO3-xLi1/2Sm1/2TiO3陶瓷的微波介电性能研究   总被引:4,自引:1,他引:4  
采用固相法制备了(1-x)CaTiO3-x(Li1/2Sm1/2)TiO3系列微波介质陶瓷材料,研究了该体系的相组成、烧结性能和微波介电性能之间的关系.结果表明:在x=0.1~0.9mol范围内,(1-x)CaTiO3-x(Li1/2Sm1/2)TiO3体系均形成了单一的斜方钙钛矿结构;x=0.1~0.5和x=0.6~0.9组分的最佳烧结温度分别为1250和1300°C;介电常数εr、无载品质因数与谐振频率乘积Qf值、谐振频率温度系数Tf均随着x的增大而减小.当x=0.7时, 1300°C下保温5h烧结得到的材料的微波介电性能为: εr=116.5,Qf=3254GHz,Tf=42.43 ×106/°C.  相似文献   

15.
采用传统陶瓷工艺制备了Bi0.5(Na0.90-xKxLi0.10)0.5TiO3-KNbO3无铅压电陶瓷,利用XRD,SEM 等测试技术分析表征了陶瓷的结构、表面形貌、介电、压电与铁电性能.结果表明:该体系陶瓷具有单相钙钛矿结构,KNbO3的引入使体系的居里温度和铁电-反铁电相变温度降低;随着钾含量的增加,KNbO3对体系性能的影响越明显.在室温下,该体系表现出良好的压电与铁电性能:压电常数d33和机电耦合系数kp分别达到195pC/N和31.9%,陶瓷样品表现出明显的铁电体特征,剩余极化强度Pr达到34.8μC/cm2,矫顽场强Ec为3.2kV/mm.  相似文献   

16.
溶胶-凝胶法制备(Bi0.5Na0.5)1-xBaxTiO3陶瓷的性能   总被引:1,自引:0,他引:1  
测量了使用溶胶-凝胶工艺制备的 (Bi0.5Na0.5)1- xBaxTiO3(x=0,0.02,0.04,0.06)系无铅 压电陶瓷的介电、压电和弹性参数.研究发现,该工艺制备的 (Bi0.5Na0.5)0.94Ba0.06TiO3陶瓷具有 此系列最强的压电性能, 与传统工艺制备的该类压电陶瓷相比, 溶胶-凝胶工艺制备的 (Bi0.5Na0.5)0.94Ba0.06TiO3陶瓷具有压电常数( d33=173× 10- 12C/N)、机电耦合系数( kt=56%, kp= 26%)、泊松比(ν =0.3)提高; 频率常数( Nt=2250Hz· m, Np=2810Hz· m)、退极化温度( Td= 75℃)降低以及介电常数(εTr33=820)、介电损耗( tgδ=3.9%)稍大的特点.  相似文献   

17.
采用传统的干压成型法制备了Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3无铅压电陶瓷,研究了不同K0.5Bi0.5TiO3含量对Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3陶瓷的微观结构与电性能的影响规律.结果表明,Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3无铅压电陶瓷随K0.5Bi0.5TiO3含量增加,晶格常数增大,密度减小,晶粒尺寸减小,压电常数先增大后减小,介电常数增大,介电损耗增加,机械品质因数下降,而居里温度不断升高,在200℃附近存在由铁电相向反铁电相转变的一个相变点,组分为0.84 Na0.5Bi0.5TiO3-0.16 K0.5Bi0.5TiO3的陶瓷位于准同型相界附近,具有最佳的压电性能.  相似文献   

18.
吴浪  肖定全  赁敦敏  朱建国  余萍  李香  孙勇  庄严  魏群 《功能材料》2007,38(11):1810-1813
采用传统陶瓷工艺制备了LiTaO3掺杂的K0.5Na0.5NbO3基无铅压电陶瓷(记为KNN xLT,x=0~8%(摩尔分数)),并研究了陶瓷的晶相、显微结构和压电、铁电等性能.研究结果表明,KNN xLT陶瓷的正交相-四方相准同型相界(MPB)位于4%<x<6%处.随着LiTaO3含量的增加,陶瓷的正交→四方结构相变温度(TO-T)向低温方向移动,而四方→立方结构相变温度(Tc)向高温方向移动.陶瓷的压电常数d33和机电耦合系数kp随LiTaO3含量的增加均先增大后减小,而剩余极化强度Pr则随之逐渐减小,矫顽场Ec逐渐增大.当x=6%时,陶瓷具有较好的压电和铁电性能:d33=190pC/N,kp=40.0%,Pr=22.0μC/cm2,Ec=1.78kV/mm,Tc=440℃.该体系陶瓷具有较高的压电常数和比较大的平面机电耦合系数,是一种应用前景良好的压电铁电材料.  相似文献   

19.
采用固相反应方法制备0.98Bi_(0.5)(Na_(0.82)K_(0.18))_(0.5)TiO_3-0.02NaNbO_3无铅压电陶瓷。研究该体系陶瓷的烧结工艺对压电陶瓷的物相、显微结构及电性能的影响。结果表明,900℃合成温度下,合成粉料为ABO_3型钙钛矿结构,烧结温度变化不会使晶体结构发生改变。随着烧结温度增加,晶粒尺寸变大,陶瓷致密性提高,但过高的烧结温度使体系中出现玻璃相。电性能表明,1 200℃烧结温度下,压电陶瓷的电性能最佳:εr=1 620、tanδ=0.030、d33=138 p C/N、kp=0.40。居里温度在1 200℃时最低,TC=370℃,烧结温度降低或升高,都会使居里温度增加。在300 Hz~700 k Hz的频率范围内,150 k Hz左右空间电荷极化失去贡献,之后介电常数趋于稳定。  相似文献   

20.
对无铅压电陶瓷0.94[(Na0.96-xKxLi0.04)0.5Bi0.5]TiO3-0.06Ba(Zr0.055Ti0.945)O3的性质随K含量的变化进行了系统研究,获得压电应变常数d33高达185pC/N的0.94[(Na0.80K0.16Li0.04)0.5-Bi0.5]TiO3-0.06Ba(Zr0.055Ti0.945)O3压电陶瓷.随着K掺杂量的增加,该陶瓷材料的介电温谱峰值向右明显移动,其介电峰温度明显升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号