首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高锂离子电池聚偏氟乙烯(PVDF)基聚合物隔膜的导电性和降低PVDF基聚合物隔膜的结晶度,引入聚甲基丙烯酸甲酯(PMMA)与聚偏氟乙烯(PVDF)进行共混,掺杂无机纳米材料TiO_2,采用相转化方法制备PVDF/PMMA/TiO_2型聚合物隔膜。通过对制备的PVDF/PMMA/TiO2型多孔膜吸液率、微观形貌和电化学性能的分析研究,确定制膜的最佳工艺条件为聚合物浓度为5%,PVDF∶PMMA为72∶28,纳米TiO_2添加量为5%,非溶剂添加量为3%,水浴温度为55℃。该方案下制备的多孔膜结晶度较纯PVDF薄膜结晶度降低,吸液率达到109.76%,离子电导率为2.64mS/cm,电化学稳定窗口为4.86V,高于4.5V,能够满足锂离子电池正常工作需要。  相似文献   

2.
主要介绍了近年国内外锂离子电池聚偏氟乙烯-六氟丙烯基复合聚合物电解质的化学改性研究进展。对组成聚偏氟乙烯-六氟丙烯基复合聚合物电解质的隔膜、增塑剂、锂盐的研究现状及机理做了总结,并展望了聚合物电解质的发展前景。  相似文献   

3.
采用静电纺丝方法制备聚偏氟乙烯(PVDF)锂离子电池隔膜,将其热压处理,探讨纤维直径、热压处理参数对隔膜力学性能、孔隙率和吸液率的影响。结果表明:在145℃、0.04MPa的条件下热压处理2h,直径约为800nm的隔膜拉伸强度为16.6MPa,孔隙率为18.9%,吸液率为260.7%;纤维直径在200~800nm的隔膜,直径越大,孔隙率越大,吸液率也越大。  相似文献   

4.
采用耐高温工程塑料聚苯硫醚(PPS)制备的无纺布为基底膜,聚偏氟乙烯(PVDF)和Si O2纳米粒子为表面涂覆材料构建耐高温复合电池隔膜(记作PVDF@Si O2/PPS)。研究发现,与商业隔膜PP/PE/PP相比,隔膜PVDF@Si O2/PPS具有较高的离子电导率和放电比容量。这主要与复合隔膜较高的孔隙率、透气性、较强的电解液浸润能力及吸液能力有关。另外,热处理实验结果表明,PPS无纺布基复合隔膜具有较强的耐热性,在250℃仍可保持较高的尺寸稳定性。可见,采用PPS无纺布构建电池隔膜为高功率高安全锂离子电池的开发提供了可能。  相似文献   

5.
为提高锂离子电池聚偏氟乙烯(PVDF)基聚合物隔膜对电解液体系的亲和性和导电性,引入聚甲基丙烯酸甲酯(PMMA)与聚偏氟乙烯(PVDF)进行共混,并添加有机增塑剂聚乙二醇PEG-400对PVDF基聚合物隔膜进行改性研究。采用先干法后湿法的相转化方法制备PVDF/PMMA/PEG型聚合物隔膜。通过对制备的聚合物隔膜的孔隙率、吸液率、微观形貌和电化学性能的分析研究,确定制膜的最佳工艺条件为聚合物占溶剂质量百分比为8%,PVDF∶PMMA=7∶3,增塑剂含量为30%,非溶剂含量为3%,反应温度为45℃,在此最佳工艺条件下制备的PVDF/PMMA/PEG隔膜的离子电导率可达2.848 m S/cm,对电解液体系的亲和性和导电性得到显著提高。  相似文献   

6.
为提高锂离子电池聚偏氟乙烯(PVDF)基聚合物隔膜的导电性和降低PVDF基聚合物隔膜的结晶度,引入聚甲基丙烯酸甲酯(PMMA)与聚偏氟乙烯(PVDF)进行共混,掺杂有机添加剂PEG和无机纳米材料TiO_2,采用相转化方法制备PVDF/PMMA/PEG/TiO_2型聚合物隔膜。通过对制备的PVDF/PMMA/PEG/TiO_2型多孔膜吸液率、离子电导率、微观形貌和电化学性能等的分析研究,确定制膜的最佳工艺条件为聚合物浓度为8%,PMMA占聚合物质量百分比为30%,PEG含量为30%,纳米TiO_2含量为5%,C2H5OH含量为3%,反应温度为45℃。该最优方案下制备的多孔膜结晶度较纯PVDF薄膜结晶度降低,多孔膜吸液率达345%,离子电导率达5.2mS/cm,拉伸强度为1 183kg/cm~2,电化学稳定窗口为4.68V,高于4.5V,能够满足锂离子电池正常工作需要。  相似文献   

7.
为了提高锂离子电池用聚烯烃微孔膜的综合性能, 在商用Celgard膜表面涂布ZrO2无机涂层, 粘结剂选用电池用聚偏氟乙烯。对比分析涂覆前后的隔膜发现, ZrO2涂层可以显著提高Celgard膜的热尺寸稳定性和热熔化温度, 对提高锂离子电池安全性起到积极作用。同时无机涂层还能明显改善隔膜对电解液的浸润性, 复合隔膜具有更好的保液能力, 以涂有ZrO2涂层的Celgard膜作为隔膜组装锂离子电池,可以显著提高长期充放电循环时电池容量保持率。  相似文献   

8.
以LiNi0.8Co0.2O2为活性物质,炭黑为导电剂,聚偏氟乙烯为粘结剂,采用溶液浇铸法制备锂离子电池正极.本文研究了不同质量含量的聚偏氟乙烯对锂离子电池正极电性能的影响.实验结果表明:当正极材料中粘结剂聚偏氟乙烯含量为4%时,所制备的正极片的电性能最佳,首次放电容量为190mAh/g,首次充放电效率最高可达91%,循环性能良好,进一步组装的18650电池经50次循环后容量为1832mAh,为首次放电容量的97.8%.  相似文献   

9.
采用相转化法(干法)以PVDF-HFP(聚偏氟乙烯-六氟丙烯共聚物)为本体聚合物制备了聚合物锂离子电池用隔膜.通过扫描电镜对隔膜形貌进行分析,研究了在干法制膜过程中空气湿度对隔膜形貌和性质的影响.采用交流阻抗技术和PC(碳酸丙烯酯)浸入实验分别测定了隔膜的电导率和吸液率.采用吸液率最高,相对湿度50%下制备的隔膜装配电池,测其电化学性质.电池首次充放电效率为88.3%,第五周可达99.4%,表现出良好的电化学性能.  相似文献   

10.
湿法制备聚偏氟乙烯-六氟丙烯聚合物隔膜的研究   总被引:1,自引:0,他引:1  
采用湿法以PVDF-HFP(聚偏氟乙烯-六氟丙烯)为本体聚合物制备了聚合物锂离子电池用隔膜.正交实验结果分析表明,工艺条件中静置时间和水浴温度为主要影响因素,并研究了这两个因素对隔膜形貌和电化学性能的影响.采用交流阻抗技术和PC(碳酸丙烯酯)浸入实验分别测定了隔膜的电导率和吸液率.采用最佳的工艺条件:搅拌温度/静置时间/空气湿度/水浴温度为55℃/10min/45%/40℃制备的聚合物隔膜装配电池,首次充放电效率为87%,放电比容量335mAh/g,充电比容量291mAh/g,表现出良好的电化学性能.  相似文献   

11.
针对传统聚烯烃类锂离子电池隔膜的耐温性差和电解液亲和性差的问题,本实验以微孔沸石纳米粒子和聚偏氟乙烯树脂(PVDF)为主要原料,通过相转化法制备了综合性能优异的沸石/PVDF复合锂电隔膜。结果表明:与商用聚乙烯(PE)膜相比,所制备的沸石/PVDF复合隔膜具有更加发达的孔道结构,其孔隙率超过70%,约为PE膜的2倍。沸石/PVDF复合膜的耐高温性和电解液润湿性明显优于PE膜和纯PVDF膜,经过160℃、0.5h的高温处理后,复合膜的热收缩率仅为5%,而PE膜已完全融化,收缩率达到100%,PVDF膜收缩率超过50%;沸石/PVDF复合膜的电解液接触角仅为7.4°,而PE膜和PVDF膜的接触角高达42.5°和31.7°。受益于丰富的孔道结构和良好的电解液吸收/保持能力,沸石/PVDF复合膜所装配锂离子电池的倍率放电容量高于PE膜,同时,该复合膜装配电池的循环性能也优于传统聚乙烃隔膜。  相似文献   

12.
以高耐热、高强度的聚醚酰亚胺(PEI)为芯层材料,以电解液亲和性和界面稳定性优良的聚偏氟乙烯(PVDF)为壳层材料,构建了一种具有同轴结构的大倍率、高耐热PEI-PVDF纳米纤维锂离子电池隔膜。通过SEM、TEM、TGA、电化学工作站、电池测试系统对PEI-PVDF同轴隔膜的微观形貌和性能进行测试与表征。结果表明:PEI-PVDF同轴纤维具有清晰的芯壳结构,与商业隔膜相比,PEI-PVDF同轴隔膜具有优异的热稳定性,在180℃下处理2 h,尺寸稳定并未发生热收缩;吸液率达到520%;电化学稳定性优异,电化学窗口达到5.0 V;离子电导率达到2.3 mS·cm-1;采用PEI-PVDF隔膜组装的锂离子电池在8 C的放电流下放电比容量仍能达到107 mAh·g-1,再回到0.2 C时恢复到原始比容量的95.4%,且电池在1 C电流下循环100次后容量保持率高达92.5%,PEI-PVDF隔膜表现出的大倍率、高耐热的特点说明该纤维膜是一种高功率、高安全的锂离子电池隔膜。   相似文献   

13.
利用不同硅烷偶联剂改性纳米SiO2,并将改性物分别加入聚(偏氟乙烯-六氟丙烯)共聚物(PVdF-HFP)溶液中,制备成锂离子电池隔膜。FT-IR和TGA测试表明,偶联剂已成功接枝到纳米SiO2表面;SEM、拉伸、热收缩和交流阻抗测试结果显示,电池隔膜中纳米SiO2的分散性、膜的机械强度、热收缩及电导率都有明显的改善;电化学测试结果表明,含改性纳米SiO2的PVdF-HFP电池隔膜的放电比容量和循环稳定性均比含未改性纳米SiO2的电池隔膜有所提高,尤其是含γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)改性SiO2的PVdF-HFP电池隔膜,各项性能均有较大的提高,其拉伸强度可达8.63MPa,离子电导率高达1.53×10-3 S/cm,放电比容量在充放电循环100次以内一直保持在142mAh/g以上。  相似文献   

14.
静电纺丝制备聚偏氟乙烯(PVDF)锂离子电池隔膜电化学性能一般,可采用混纺增强其电化学性能。采用二氧化钛(TiO_2)与PVDF混纺,制得TiO_2/PVDF锂离子电池隔膜,研究不同TiO_2的添加量对TiO_2/PVDF锂离子电池隔膜性能的影响,考察其力学性质、离子电导率、放电比容量和循环性能。结果表明:在添加1.5%(wt,质量分数)TiO_2条件下,制得的TiO_2/PVDF锂离子电池隔膜的孔隙率高达52.54%,吸液率403.70%,离子电导率4.2×10~(-4)S/cm;在0.5C条件下放电比容量为134.0mAh/g,循环25次条件下,TiO_2/PVDF锂离子电池隔膜的放电比容量仍有130.0mAh/g,放电比容量的波动小,循环稳定性好。  相似文献   

15.
通过溶剂热合成法合成了平均粒径为69.4nm的钙钛矿型快锂离子导体-钛酸镧锂(LLTO),以聚偏氟乙烯-六氟丙烯(PVDF-HFP)为基体材料,掺杂不同含量的LLTO纳米颗粒,利用静电纺丝法制备PVDF-HFP/LLTO复合锂离子电池隔膜。考察分析了LLTO的含量对复合纳米纤维膜的表面形貌、热学性能及电化学性能的影响。研究结果表明,当LLTO的质量掺入量为15%时,该复合隔膜的电解液吸液率为249%,可达到商业隔膜(140%)的1.8倍,离子电导率达2.483×10~(-3)mS/cm;组装成电池后,首次放电比容量高达213mAh/g,显示出优异的电化学性能。  相似文献   

16.
以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。  相似文献   

17.
以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。  相似文献   

18.
以聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)为单体,八乙烯基多面体齐聚倍半硅氧烷(OVPOSS)为交联剂,通过紫外光照引发聚合,形成交联结构,并与线型聚偏氟乙烯-六氟丙烯共聚物(PVd F-HFP)形成一种新型的凝胶聚合物隔膜。为了进一步提高聚合物膜的力学强度和电化学性能,用纤维素无纺布和致孔剂对其改性。实验结果表明,改性后隔膜的力学性能、离子电导率和孔隙率都得到明显的提高,拉伸强度最高达到10.6 MPa。与商用聚乙烯膜、单一的PVd FHFP多孔膜和未用无纺布改性的隔膜比较,聚合物改性后的隔膜在150℃仍可以保证尺寸稳定。采用改性隔膜组装的锂离子电池拥有更好的循环和倍率放电性能,在0.5 C/0.5 C的充放电条件下能够稳定循环,最高放电比容量可达到145m A·h/g。  相似文献   

19.
为了改善锂离子电池的高温安全性和充放电性能,以聚苯醚树脂为成膜材料,采用静电纺丝技术制备了纳米纤维锂电隔膜,对隔膜的形貌、结构、电解液亲和性和耐高温性进行了系统测试,并将该纳米纤维膜装配到电池中进行充放电性能测试。结果显示:聚苯醚隔膜的纳米纤维直径约为260nm,纤维交错形成均匀的孔道(平均孔径约500nm),其孔隙率达到74%以上,为聚烯烃隔膜的2倍左右;聚苯醚树脂的电解液亲和性和高孔隙率强化了隔膜的电解液吸收和保持能力,其吸液率约为310%;在150℃,60min的热处理条件下,该隔膜的尺寸收缩率几乎为零。电池性能测试表明,聚苯醚基纳米纤维膜显示出更优的放电倍率性能和循环性能。  相似文献   

20.
通过静电喷涂技术成功制备出一种超高分子量聚乙烯(UHMWPE)锂电池复合隔膜。首先通过研究溶液浓度及电压等因素对聚偏氟乙烯(PVDF)溶液静电喷涂的影响,确定最佳喷涂条件为PVDF质量分数3%,喷涂电压21 k V。然后通过在超高分子量聚乙烯隔膜上静电喷涂PVDF颗粒,制备出复合隔膜。最后,对该复合隔膜的孔隙率、热稳定性、充放电性能测试。结果表明,该隔膜的孔隙率从46.5%提高到73.1%;纵向热收缩率从2.6%降低到1.3%;首次放电容量比相应的超高分子量聚乙烯隔膜提高了4.2%,经过50次循环,稳定性良好,可作为锂离子电池隔膜使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号