首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解雨庆 《硅谷》2011,(18):25-26
为保证差模干扰抑制器的温度稳定性以及在35mA大直流偏置下器件具有较高的偏置电感量和阻抗值,要制备出高阻高Bs的NiCuZn铁氧体材料。为此通过改变主成分配方中ZnO及Fe2O3的百分含量,掺入适量Co2O3,制备出起始磁导率μi为770,饱和磁感应强度Bs为388mT,居里温度Tc≥190℃,电阻率≥1×108Ω·㎝的NiCuZn铁氧体材料。  相似文献   

2.
MoO3掺杂对高磁导率NiCuZn铁氧体性能的影响   总被引:1,自引:0,他引:1  
为获得具有高磁导率、高居里温度的NiCuZn铁氧体材料,研究了MoO3掺杂对NiCuZn铁氧体微观结构及电磁性能的影响.少量MoO3掺杂可使铁氧体晶粒尺寸增大,均匀性改善,起始磁导率提高,而居里温度仅有较小幅值的下降.但掺杂过量时,晶粒中气孔率增加,起始磁导率下降,损耗也大为增加.在配方(Ni0.28Cu0.1Zn0.62)Fe2.04O4中,当MoO3掺杂为0.12wt%时,可获得起始磁导率为2650,而居里温度高达到105℃的铁氧体材料.  相似文献   

3.
胡军  严密  包大新  张文勇 《功能材料》2005,36(6):853-855
通过减小原材料粒度和在主配方中添加适量CuO,显著降低了NiZn铁氧体样品的烧结温度,在930℃低烧结温度条件下制备的NiZn铁氧体样品的晶粒更完整,组织更致密,使得材料的初始磁导率>1500。与传统工艺条件下制备的磁导率相当的NiZn铁氧体相比,本文中使用较低的NiO含量、预烧温度和烧结温度,制备的NiZn铁氧体具有更好的性能和较低的生产成本。  相似文献   

4.
用传统陶瓷工艺制备了Ni0.32Cu0.10Zn0.60O(Fe2O3)0.98铁氧体材料,研究了添加V2O5对材料烧结特性和磁性能的影响。结果表明,当V2O5为0.12%(w)时,晶粒生长均匀、结构较好。此时在50kHz、150mT、100℃测试条件下,功耗有最小值(275.7 kW/m3),其值为未掺杂损耗(689.5 kW/m3)的40%。  相似文献   

5.
采用固相法制备了Ni0.2Cu0.2Zn0.6Fe2O4铁氧体,在850℃进行预烧结,通过添加不同量的Bi2O3-HBO3-ZnO(BBZ)助熔剂,在不同温度烧结成型。研究了烧结温度和BBZ添加量对NiCuZn铁氧体材料微观结构和磁性能的影响。通过XRD、SEM、VSM和磁谱分析,结果表明,BBZ的加入起到了良好的低温烧结作用,在不同的烧结温度下性能呈现一定的规律。加入2%(质量分数)BBZ、950℃烧结的NiCuZn铁氧体晶粒生长较均匀,饱和磁化强度为51.9emu/g,起始磁导率μ′=349.9,磁谱损耗角正切值tanδ在0.02左右。  相似文献   

6.
掺杂对高磁导率低损耗锰锌铁氧体材料磁性能的影响   总被引:1,自引:0,他引:1  
采用氧化物陶瓷工艺制备了高磁导率低损耗锰锌铁氧体材料,研究了Nb2O5掺杂对材料磁性能的影响。结果表明掺杂0.015%(质量分数)Nb2O5的锰锌铁氧体材料具有较好的磁性能:起始磁导率μi=13386,起始磁导率比温度系数αμ/μi=-0.6×10-6/K,相对损耗因数tanδ/μi=3.2×10-6。  相似文献   

7.
多层片式电感器用NiCuZn铁氧体的低温烧结   总被引:4,自引:0,他引:4  
本文利用Bi2O3作为烧结促进剂实现了NiCuZn铁氧体在900℃以下烧结.利用TG、DTA、DDTA等分析手段研究Bi2O3的低温烧结机理,并确定最佳烧结温度范围在840~900℃之间.X-ray分析结果表明:加入Bi2O3后生成另相化合物Bi36Fe2O57烧结后期少量Fe的固溶有助于稳定高温γ-Bi2O3相的立方结构,避免了冷却过程中的晶型转变.Bi36Fe2O57另相的存在能有效地阻止晶粒长大,从而达到改性的目的.  相似文献   

8.
多层片式电感器用 NiCuZn铁氧体的低温烧结   总被引:6,自引:0,他引:6  
本文利用Bi  相似文献   

9.
以NaCl作为熔盐体系通过固相-熔盐法制备出了掺杂La的NiCuZn铁氧体Ni0.17Cu0.2Zn0.62La2x-Fe2.02-2xO4.02超细粉末.利用XRD、SEM和VSM等手段对样品进行了表征,讨论了La掺杂对NiCuZn铁氧体形态、性能的影响.结果表明,只有在La掺杂量为X≤0.02的范围内,才能得到单相尖晶石结构铁氧体;当X>0.02后,就会出现有La2O3的杂相产生.通过磁性研究表明适量的La掺杂可以降低NiCuZn铁氧体的居里温度.从室温和低温下的磁滞回线发现,样品低温下的比饱和磁化强度σs和矫顽力均比室温下的大.  相似文献   

10.
锰锌、镍锌铁氧体的研究现状及最新进展   总被引:8,自引:2,他引:8  
对常用的锰锌、镍锌软磁铁氧体材料的应用及其性能进行了介绍,着重从配方要求、添加剂的作用等方面综合介绍了国内外的研究情况及最新进展,指出了今后软磁铁氧体研究的主要方向及所要达到的性能要求.研究表明,配方是决定铁氧体材料性能好坏的决定性因素,加入添加剂是改善铁氧体材料性能的有效方法之一,烧结工艺是制备高性能铁氧体的关键.今后软磁铁氧体发展的重点是高频低功耗、高磁导率材料和片式化的表面贴装元件,还应开展纳米软磁铁氧体的研究.  相似文献   

11.
12.
高磁导率锰锌铁氧体的ZnO过量研究   总被引:1,自引:0,他引:1  
本文叙述了用化学共沉法和普通的空气中烧结,真空冷却工艺,制备了μ_i为10000的MnZn铁氧体材料。配方中ZnO过量2mol%,能提高μ_i30%。文中对高μ_i锰锌铁氧体性能和结构进行详细的研究。  相似文献   

13.
采用固相反应法制备添加Ta2O5的NiCuZn铁氧体, 研究了不同Ta2O5含量对NiCuZn铁氧体显微结构, 静磁性能和高频损耗的影响。结果表明: Ta2O5具有细化NiCuZn铁氧体晶粒的作用, 可降低材料的烧结密度。随着Ta2O5含量的增加, 样品的饱和磁感应强度和起始磁导率单调减小, 矫顽力则逐渐增大, 截止频率逐渐升高, 而高频损耗呈先降低后增加的趋势, 其主导因素由剩余损耗逐渐过渡到磁滞损耗。当Ta2O5含量为0.12wt%时, 样品在3 MHz、10 mT、100℃下总损耗最小, 为139 mW/cm3, 其中磁滞损耗和剩余损耗分别为93 mW/cm3和46 mW/cm3。  相似文献   

14.
研究了MnZn高磁导率铁氧体材料在Fe2O3含量不变的前提下,增加ZnO量,起始磁导率、品质因数、饱和磁感应强度及其与温度、频率的关系.结果表明,加入ZnO可以提高起始磁导率,饱和磁感应强度Bs和居里温度降低;当ZnO含量不超过25%mol时,高磁导率MnZn铁氧体材料有着良好的频率特性,但ZnO含量超过25mol%时,由于Zn2+是非磁性离子,且ZnO挥发严重,相反会使得起始磁导率μi下降.  相似文献   

15.
本文采用传统陶瓷工艺制备了高磁导率MnZn铁氧体材料.为获得高磁导率MnZn铁氧体材料,从分析材料微观结构入手,研究了适当的工艺条件以及CaCO3和SnO2不同的掺入比对高磁导率MnZn铁氧体材料性能的影响.研究结果表明,由于Ca2 离子存在于晶界,少量的CaCO3掺入会使铁氧体晶粒尺寸增加,均匀性改善,起始磁导率增加,而CaCO3掺杂过量,将会增加晶粒中的气孔率,从而降低起始磁导率.SnO2掺入后,由于Sn4 离子存在于晶界中,为满足电荷平衡的要求,引起晶界附近金属离子空位增多,从而加速畴壁的运动,提高材料的起始磁导率.  相似文献   

16.
微波铁氧体吸收剂复磁导率和复介电常数的温度特性研究   总被引:4,自引:0,他引:4  
张秀成  赵振声 《功能材料》1994,25(2):169-171
本文对(Zn_(1-x)Co_x)_2-w型六角晶系铁氧体吸波材料的复磁导率μ_r和复介电常数ε_r的温度特性进行了研究。实验发现当温度从-25℃升至100℃时,复磁导率的实部μ'_r值从1.51降至1.30,虚部μ″_r值从0.19降至0.14,复介电常数的实部ε′_r值从6.50升至7.10,虚部ε″_r值从1.70升至1.80,理论上对电磁参数随温度变化特性进行了分析讨论。  相似文献   

17.
掺杂对高导MnZn铁氧体微结构和性能的影响   总被引:1,自引:0,他引:1  
采用传统陶瓷工艺制备了高磁导率MnZn铁氧体材料。从分析材料微观结构入手,研究了P2O5和Nb2O5的掺入,组以适配的工艺条件和不同的比例掺入,来研究对高磁导率MnZn铁氧体材料性能的影响。少量P2O5掺杂可使铁氧体晶粒尺寸增大,均匀性改善,起始磁导率提高。但若掺杂过量,晶粒中气孔率增加,起始磁导率下降,损耗也大为增加。在配方为Zn0.15Mn0.78Fe2.07O4的材料中,当P2O5掺杂量为0.16%(wt)时,起始磁导率可达10697。Nb2O5的添加起到细化晶粒的作用,可以改善材料的频率特性,降低材料损耗,磁导率稍有降低,但当Nb2O5的质量分数>0.005%时,会显著降低材料的起始磁导率。  相似文献   

18.
低损耗Mn-Zn铁氧体电磁参数与烧结温度的关系研究   总被引:3,自引:0,他引:3  
本文研究了在不同烧结温度下 ,低损耗Mn Zn铁氧体材料的功耗、起始磁导率、饱和磁通密度、居里温度、电阻率、Zn挥发情况及微观结构等因素的变化 ,结果表明 :随着烧结温度的升高 ,功耗先下降 ,后上升 ;样品的烧结密度、起始磁导率都升高 ;Zn的挥发严重 :饱和磁通密度和居里温度基本上没有什么变化 ;晶粒的微观结构也受烧结温度的直接影响。由此说明烧结温度是决定Mn Zn铁氧体材料性能的关键因素之一  相似文献   

19.
电子设备仪器体积小型化的发展,人们对轻薄小型化、高性能化和高密度化的电子元器件的需求日益增长,高磁导率(μ)Mn—Zn铁氧体材料于是应运而生并不断取得新的进展。它在抗电子干扰(EMI)滤波器、电子线路宽带变压器以及综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)等网络领域的脉冲变压器中得到了非常广泛的应用。[编按]  相似文献   

20.
我国软磁铁氧体产业发展与未来   总被引:4,自引:0,他引:4  
软磁铁氧体材料已经被广泛应用于民用和工业领域。随着21世纪信息技术和电子产品数字化的发展,对软磁铁氧体和元件提出了新的要求。如器件的小型化、片式化、高频化、高性能、低损耗等。软磁铁氧体材料将进一步向高频、高磁导率和低损耗的两高一低方向发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号