首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 71 毫秒
1.
通过一步固相反应和两步固相反应分别合成LiVPO4F/C,采用XRD、SEM和电化学性能测试对LiVPO4F/C进行性能表征。XRD研究表明一步固相反应合成的LiVPO4F/C与两步固相反应合成的样品一样,均属于三斜晶系结构。SEM研究表明:一步固相反应合成的LiVPO4F/C颗粒比两步固相反应合成的样品颗粒小,一步固相反应合成的 LiVPO4F/C 样品电化学性能得到提高是由于草酸作为还原剂和碳源合成的样品颗粒变小。交流阻抗研究表明步固相反应合成的LiVPO4F/C样品电化学阻抗减小。  相似文献   

2.
马锐  蔡芬峰  水淼  舒杰 《热加工工艺》2012,41(16):89-94
通过2步高温固相反应来合成LiVPOF正极材料.第一步是将五氧化二钒、磷酸二氢铵和乙炔黑在N2的保护下合成中间体VPO4(即为α);第二步是VPO4和LiF进一步反应生成单相LiVPO4F.考察了乙炔黑不同的过量百分比(过量25%时,合成的LiVPO4F为β1,过量50%时,合成的LiVPO4F为β2)对产物组成和电化学性能的影响.结果表明:β1的产物组成和电化学性能优于β2.XRD测试表明:所合成的LiVPO4F属于三斜晶系,其晶胞参数:a=0.5173im、b=0.5309 nm、c=0.7250 nm;红外测试表明:LiVPO4F的吸收峰主要是由V=O、O-V-O和PO4基团引起;SEM测试表明:样品β1颗粒均匀度优于样品β2,平均粒径为2μm左右.电化学测试表明:β1和β2在第一个循环的充电比容量分别为82.2、99.2 mAh/g,放电比容量分别为71.7、58.5 mAh/g,19周后,其充电比容量分别为64.7、58.8 mAh/g,放电比容量分别为在62.4、52.0 mAh/g.LiVPO4F的平均脱锂电位在4.3V以上,平均嵌锂电位在4.15V左右.这说明,样品β1具有更好的电化学性能.以上综合表明,LiVPOF作为一种锂离子电池正极材料具有良好的稳定性和可逆性.  相似文献   

3.
介绍了LiFePO4正极材料的结构特点和反应机理,详细讨论了金属离子掺杂、碳包覆和控制活性材料的尺寸等改性研究对LiFePO4材料的电化学性能的影响.从而进一步优化高性能锂离子电池正极材料的改性过程,促进锂离子电池性能的改善.  相似文献   

4.
LiFePO4/C锂离子电池正极材料的电化学性能   总被引:7,自引:2,他引:7  
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%.  相似文献   

5.
与LiFePO_4材料相比,LiFeSO_4F正极材料理论上具有更稳定的结构、更高的电压平台和离子电导率,有望成为动力锂离子电池的热门正极材料,具有更好的应用前景。介绍了LiFeSO_4F正极材料的结构,综述了近年来LiFeSO_4F正极材料的合成及掺杂改性方面的研究进展,重点对LiFeSO_4F正极材料的制备方法和掺杂进行了总结和探讨,并对LiFeSO_4F正极材料的发展前景进行了展望。  相似文献   

6.
用固相法合成LiFe1-xYxPO4 (x=0, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,采用X射线衍射仪、扫描电子显微镜、粉末比电阻法和充放电性能测试表征材料的晶体结构、微观形貌、电子电导率和电化学性能。结果表明,少量的钇掺杂并未改变材料的晶体结构,但改善了材料的微观结构,提高其电子电导率,改善可逆容量和电化学性能。在10 mA/g的电流密度下,LiFe0.97Y0.03PO4首次放电容量可达146.54 mAh/g。  相似文献   

7.
以FePO4、Li2CO3和葡萄糖为原料,用液氮急速淬火法制备单一橄榄石结构的锂离子电池正极材料LiFePO4/C。结果表明:淬火使得LiFePO4晶格中产生Li空位,有利于提高其电子导电性。淬火样品的一次颗粒细小(100~500 nm),无明显团聚,并形成多孔结构;该样品在1C、2C和4C倍率下的首次放电比容量分别为151.4、138.0和116.7 mA.h/g,循环100次后的容量保持率高达99.3%、98.6%和94.5%。  相似文献   

8.
利用微乳液法在温和条件下合成Li_2FeSiO_4/C的前驱体,煅烧后得到蠕虫形纳米Li_2FeSiO_4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700℃煅烧9 h得到的蠕虫形Li_2FeSiO_4/C在室温、1.5~4.8 V的电压范围内,于C/16、C/8和1C倍率下的首次放电容量分别为140.1,139和94.0 mAh/g,循环20次后的容量保有率分别为96.4%,81.2%和73.5%。该样品具有良好的循环稳定性与倍率性能。  相似文献   

9.
锂离子电池正极材料Li2FeSiO4/C的微波合成   总被引:5,自引:0,他引:5  
采用高能球磨结合微波合成工艺,以Li2CO3、FeC2O4-2H2O、纳米SiO2和葡萄糖为原料合成锂离子电池正极材料Li2FeSiO4/C.利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、表观形貌及电化学性能进行表征.考察超导电碳黑的添加、微波处理时间以及微波加热温度等对Li2FeSiO4/C材料合成及其性能的影响.结果表明:以超导电碳黑为微波耦合剂,采用微波合成法在650 ℃下处理10 min可快速制备具有正交结构的Li2FeSiO4/C材料;获得的Li2FeSiO4/C材料颗粒细小均匀,具有较好的电化学性能;在60 ℃下以C/20对Li2FeSiO4/C材料进行充放电时,其首次放电容量为121.7 mA-h/g,10次循环后其放电容量仍保持为119.2 mA-h/g.  相似文献   

10.
对比分析了锂离子电池的正极材料锂钻氧系、锂锰氧系、锂镍氧系材料以及目前颇具潜力的正极替代材料:含铁的聚阴离子化合物和高分子聚合物的微观晶体结构特征,讨论了由于材料晶体结构的差异产生的不同电化学性能提出了锂离子二次电池正极材料在结构上所必须具备的特征。  相似文献   

11.
锂离子电池正极材料LiNi1-yAlyO2的制备及性能   总被引:3,自引:1,他引:3  
在高温增加氧气压力的条件下 ,通过固态反应合成了锂离子电池正极材料LiNi1-yAlyO2 。讨论了合成条件对产物的电化学性能的影响 ,得到最佳的反应条件是 :2个恒温阶段的反应时间为 8h和 10h ;氧气压力为0 .2 0MPa ;反应温度 80 0℃ ;反应物Li,Ni,Al之间的摩尔比为 1.1∶0 .95∶0 .0 5。合成出具有晶型完整、电化学性能优良的LiNi0 .95Al0 .0 5O2 产品 ,其放电容量达 182 .3mA·h/g。结果表明 ,Al3 + 的添加对LiNiO2 的结构及电化学性能有较大的改善。  相似文献   

12.
LiMnPO4/C composites were synthesized via solid-state reaction with different carbon sources:sucrose,citric acid and oxalic acid.The samples were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and electrochemical performance test.The results of XRD reveal that carbon coating has no effect on the phase of LiMnPO4.The LiMnPO4/C synthesized at 600 ℃ with citric acid as carbon source shows an initial discharge capacity of 117.8 mAh·g-1 at 0.05 C rate.After 30 cycles,the capacity remains 98.2 mAh.g 1.The improved electrochemical properties of LiMnPO4/C is attributed to the decomposition of organic acid during the sintering process.  相似文献   

13.
A Li2FeSiO4/C composite cathode for lithium ion batteries was synthesized at 650 ℃ by solid-state reaction. The effects of carbon sources and carbon content on the properties of the Li2FeSiO4/C composites were investigated. The crystalline structure, morphology, carbon content and charge/discharge performance of Li2FeSiO4/C composites were determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), carbon/sulfur analyzer and electrochemical measurements. As carbon content increases in the range of 5%-20%, the amount of Fe3O4 impurity phase decreases. The SEM micrographs show that the addition of the carbon is favorable for reducing the Li2FeSiO4 grain size. Using sucrose as carbon source, the Li2FeSiO4/C composite with 14.5% carbon synthesized at 650 ℃ shows good electrochemical performance with an initial discharge capacity of 144.8 mA-h/g and a capacity retention ratio of 94.27% after 13 cycles.  相似文献   

14.
高密度锂离子电池正极复合材料LiFePO4/C   总被引:2,自引:1,他引:2  
以FeC2O4-2H2O、NH4H2PO4、Li2CO3和乙炔黑为原料,采用两步固相反应法制备了高密度LiFePO4/C正极复合材料.利用差热(DSC),热重(TGA)和X射线衍射(XRD)等分析手段具体探讨了第一步固相反应中可能存在的反应过程和中间产物.利用扫描电镜表征了复合材料LiFePO4/C中LiFePO4微粒形貌和接触状态.结果表明,乙炔黑的含量是影响LiFePO4微粒尺寸和微粒间接触界面的重要因素.在一次热处理的基础上,二次球磨和烧结有利于第二次固相反应过程中反应物质的接触和传质,较一步固相法提高了生成的LiFePO4的振实密度.当乙炔黑的含量(质量分数)为0.1%~1.5%时,两步固相法所制正极材料LiFePO4/C的振实密度可达到1.7 g/cm3,初次放电容量达到105 mA.h/g.  相似文献   

15.
Spinel lithium manganese oxide cathode materials were synthesized using the ultrasonic-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and the charge-discharge test. TG-DTA shows that significant mass loss occurs in two temperature regions during the synthesis of LiLa0.01Mn1.9903.99F0.01. XRD data indicate that all samples exhibit the same pure spinel phase, and LiLa0.01Mn1.9903.99F0.01 and LiLa0.01Mn1.9904 samples have a better crystallinity than LiMn2O4. SEM images indicate that LiLa0.01Mn1.9903.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 130, 123, and 126 mAh·g^-1, respectively, and the capacity retention rates of the initial value, after 50 cycles, are 84.8%, 92.3%, and 92.1%, respectively. The electrode coulomb efficiency and CV reveal that the electrode synthesized by the ultrasonic-assisted sol-gel (UASG) method has a better re- versibility than the electrode synthesized by the sol-gel method.  相似文献   

16.
Spinel lithium manganese oxide cathode materials were synthesized using the ultrasonic-assisted sol-gel method.The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG),powder X-ray diffraction (XRD),scanning electron microscopy (SEM),cyclic voltammetry (CV),and the charge-discharge test.TG-DTA shows that significant mass loss occurs in two temperature regions during the synthesis of LiLa0.01Mn1.99O3.99F0.01.XRD data indicate that all samples exhibit the same pure spinel phase,and LiLa0.01Mn1.99O3.99F0.01 and LiLa0.01Mn1.99O4 samples have a better crystallinity than LiMn2O4. SEM images indicate that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution.The charge-discharge test reveals that the initial capacities of LiMn2O4,LiLa0.01Mn1.99O4,and LiLa0.01Mn1.99O3.99F0.01 are 130,123,and 126 mAh·g-1,respectively,and the capacity retention rates of the initial value,after 50 cycles,are 84.8%,92.3%,and 92.1%,respectively.The electrode coulomb efficiency and CV reveal that the electrode synthesized by the ultrasonic-assistexi sol-gel (UASG) method has a better reversibility than the electrode synthesized by the sol-gel method.  相似文献   

17.
18.
Carbon-coated Li3V2(PO4)3 cathode materials for lithium-ion batteries were prepared by a carbon-thermal reduction (CTR) method using sucrose as carbon source.The Li3V2(PO4)3/C composite cathode materials were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurement.The results show that the Li3V2(PO4)3 samples synthesized using sucrose as carbon source have the same monoclinic structure as the Li3V2(PO4)3 sample synthesized using acetylene black as carbon Source.SEM image exhibits that the particle size is about 1 μm together with homogenous distribution.Electrochemical test shows that the initial discharge capacity of Li3V2(PO4)3 powders is 122 mAh·g-1 at the rate of 0.2C,and the capacity retains 111 mAh·g-1 after 50 cycles.  相似文献   

19.
Carbon-coated Li3V2(PO4)3 cathode materials for lithium-ion batteries were prepared by a carbon-thermal reduction (CTR) method using su- crose as carbon source. The Li3V2(PO4)3/C composite cathode materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurement. The results show that the Li3V2(PO4)3 samples synthesized using sucrose as carbon source have the same monoclinic structure as the Li3V2(PO4)3 sample synthesized using acetylene black as carbon source. SEM image exhib- its that the particle size is about 1 μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of Li3V2(PO4)3 powders is 122 mAh·g-1 at the rate of 0.2C, and the capacity retains 111 mAh·g-1 after 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号