首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
为分析有机硅(Si)/可膨胀石墨(EG)对聚丙烯/热塑性聚氨酯/(PP/TPU)共混物性能的影响,通过差示扫描量热(DSC)、扫描电镜(SEM)、热重分析(TGA)、锥形量热仪(CONE)等表征方法对复合材料体系的结晶行为、热稳定性能、燃烧行为及残炭形貌特征进行了研究.结果表明:EG是一种有效的阻燃剂,能显著提高材料的阻燃性能;Si的存在对PP/TPU/EG复合材料有促进结晶作用,熔点增加,耐热性能得以提高,但Si的添加对复合材料体系的阻燃性能有一定的抑制作用,表明Si与EG复配在阻燃PP/TPU共混物时在阻燃效果上具有反协同效应.  相似文献   

2.
分别使用天然石墨用插层-还原法制备膨胀石墨微片(EG)、使用天然石墨用Hummer法制备氧化石墨烯(GO),再使用GO分别由热还原法制备石墨烯片(T-rGO)和化学还原法制备石墨烯片(C-rGO)。将上述三种产物作为填料与PP熔融共混制备出不同填料含量的PP/EG、PP/T-rGO和PP/C-rGO复合材料,用X-射线衍射(XRD)分析、热分析(DSC)、扫描电子显微镜(SEM)、热失重分析(TGA)、拉伸及冲击测试等手段对三种复合材料的结构和性能进行表征,研究了用不同方法制备的石墨微片对复合材料性能的影响。结果表明,当填料EG、T-rGO的含量为0.1%(质量分数,下同)时PP/EG、PP/T-rGO复合材料的拉伸强度达到32.2 MPa和33.5 MPa,分别比纯PP提高了7.2%和11.2%;冲击强度分别比纯PP提高了27.4%和19.6%。当填料C-rGO的含量为0.3%时PP/C-rGO复合材料的拉伸强度和冲击强度分别为37.3 MPa和5.8 k J/m2,较纯PP提高了23.9%和27%。填料EG、T-rGO和C-rGO的加入使PP/石墨微片复合材料的熔融温度、结晶温度和结晶度比纯PP提高,当填料C-rGO的含量为0.1%时PP/C-rGO复合材料的熔融温度比纯PP提高了10.2℃,其结晶度提高了4.2%,这是石墨微片在复合材料中的"异相成核效应"诱导PP分子链的规整性排列引起的。当分别加入含量为0.1%的三种填料时PP/EG、PP/T-rGO和PP/C-rGO复合材料的最大热分解温度分别比纯PP提高了13.5℃、9.1℃和6.9℃,表明加入少量的石墨微片就能使PP的热稳定性明显改善。少量的填料能均匀的分散在基体中,但是加入过量的填料时出现团聚。  相似文献   

3.
研究了1种有机协效阻燃剂(OSF)表面功能化可膨胀石墨(EG)及其在阻燃聚丙烯(PP)中的应用。通过红外光谱(FT-IR)、扫描电镜(SEM)、极限氧指数(LOI)、UL-94垂直燃烧、热失重分析(TG)和差示扫描量热(DSC)等表征方法对EG的功能化效果、阻燃PP复合材料的阻燃性能、热稳定性、结晶行为与力学性能进行了研究。结果表明OSF成功地接枝到了EG表面。改性后的EG是1种有效的阻燃剂,能显著提高PP的阻燃性能,其阻燃性能达UL-94V0级。改性EG的加入,PP的热稳定性得到改善,高温时的残炭量增加。改性EG对PP有异相成核作用,PP结晶温度向高温方向偏移。阻燃剂的加入劣化了PP的力学性能,且随着其含量的增加而逐渐降低。  相似文献   

4.
采用熔融共混法制备了nano-ZnO/聚丙烯(PP)复合材料,研究了相容剂聚丙烯接枝马来酸酐(PP-gMAH)的加入对nano-ZnO/PP复合材料的成核结晶行为、晶体结构、结晶形态以及力学性能的影响。结果表明,低添加量(质量分数小于5%)的nano-ZnO对PP有较好的β晶成核效应,而当其质量分数大于5%时,nano-ZnO对PP结晶有明显的异相成核作用,使PP结晶温度大幅度提高,PP结晶在(040)晶面呈现生长择优性;PP-gMAH的加入增强了nano-ZnO粒子与PP基体之间的界面相互作用,改善了纳米粒子的分散性,促进了PP基体的异相成核,提高了nano-ZnO/PP复合材料的拉伸强度和冲击强度,但却抑制了nano-ZnO诱导PP生成β晶。nano-ZnO/PP复合材料体系中因界面相互作用改善所致的韧性提高明显强于nano-ZnO诱导PP形成β晶的增韧效应。  相似文献   

5.
硅烷偶联剂处理对 SF/PP结构和性能的影响   总被引:6,自引:0,他引:6  
采用熔融共混和注塑成型的方法制备了硅烷偶联剂处理的剑麻短纤维(SF)增强聚丙烯(PP)的复合材料,研究了SF表面偶联剂处理对复合材料的晶形结构、微观结构、热性能及力学性能的影响.结果表明硅烷处理削弱了SF在PP结晶过程中的异相成核作用,降低了SF/PP复合材料中PP相的结晶度、结晶温度和结晶速率;提高了复合材料中β-晶型PP的相对含量;增强了SF/PP的界面键合,显著提高了复合材料的冲击强度.  相似文献   

6.
采用微波辐射法制备了膨胀石墨(EG),将其作为增强相加入到聚醚砜(PES)基体中,利用溶液共混法和真空辅助模压成型工艺得到EG/PES复合材料,使用SEM、FTIR和XRD等分析手段表征了EG及其复合材料的微观结构和性能,并对复合材料的力学性能进行了测试。结果表明:PES分子插入到了EG片层内部,并且EG与PES分子之间产生了氢键作用;当EG含量为5.0%(质量分数)时,复合材料的拉伸和弯曲强度达到最大值,分别为94.6 MPa和146.7 MPa,较树脂基体提升了10.5%和7.3%;EG在PES基体内的分散性直接影响了复合材料的力学性能,嵌入到复合材料内部的EG不仅能够改变微观裂纹的走向,还能阻止其进一步蔓延和扩展,改善复合材料内部的应力分布情况。  相似文献   

7.
为了增强竹塑复合材料力学性能,在传统的偶联剂、温度、竹塑比等的影响因素下,再加入竹纤维来提高传统竹塑复合材料的力学性能。以聚丙烯(PP)为基体材料,运用热压工艺,研究了加入竹纤维对传统竹塑复合材料的力学性能的影响。以偶联剂用量、热压温度、竹粉比例、竹纤维用量为正交因素,用极差分析的方法确定影响材料力学性能的最优配方,结果表明,竹塑比为5:5,钛酸酯偶联剂用量1%,热压温度在190℃,竹纤维用量15g,复合材料冲击强度最大达25.26kJ·m-2,拉伸强度最大达27.81MPa,均优于传统复合材料。因此加入竹纤维能有效的提高复合材料的力学性能。  相似文献   

8.
采用熔融共混法制备了聚丙烯(PP)/热塑性聚氨酯弹性体(TPU)/纳米SiO2复合材料,研究了复合材料的力学性能、结晶性能、流变性能.研究结果表明,填充5%的TPU和极少量纳米SiO2具有协同增强和增韧效应;PU能诱导PPβ晶的形成,纳米SiO2的用量影响其诱导作用;纳米SiO2对PP/TPU有一定的增容作用,使复合材料体系的模量与黏度增大.  相似文献   

9.
为提高聚丙烯(PP)基复合材料的力学性能和热学性能,将不同质量分数的超微竹炭(UFBC)作为增强体引入聚丙烯,通过熔融挤出及注塑成型工艺制备UFBC/PP复合材料。利用SEM和DSC分析、力学强度和吸湿性测试等手段综合表征复合材料性能。结果表明:UFBC与PP基体间界面结合紧密;UFBC的添加对PP复合材料的力学强度有较好的增强效果:UFBC质量分数为30wt%时,UFBC/PP复合材料的拉伸强度和弯曲强度达到较大值,分别为26MPa和54MPa,较纯PP分别提高了9%和18%,UFBC/PP复合材料的耐湿性仍保持较佳水平,吸湿率均小于0.1%;UFBC质量分数为40wt%时,熔融温度提高了3.1℃;UFBC质量分数为50wt%时,UFBC/PP复合材料的结晶温度提高了10.8℃。UFBC的添加有效促进了UFBC/PP复合材料的结晶,改善了其加工性。  相似文献   

10.
采用甲苯-2,4-二异氰酸酯(TDI)对氧化石墨烯(GO)进行表面接枝改性,制得TDI功能化GO(TDI-GO),再将其分散于4,4’-二苯基甲烷二异氰酸酯中,经原位聚合法制备TDI-GO/热塑性聚氨酯弹性体(TPU)复合材料。利用FTIR、XPS、DSC、TG、SEM、维卡软化温度和拉力试验机等测试手段,表征和分析了TDI-GO的表面结构及TDI-GO含量对TDI-GO/TPU复合材料结构与性能的影响。结果表明,TDI成功接枝改性GO,TDI-GO的加入使TPU体系的微相分离程度减弱,其异相成核作用提高了TPU硬段相的结晶性能;相比纯TPU基体,TDI-GO/TPU复合材料耐热性能提高,当TDI-GO添加量为0.5wt%时,复合材料5%热失重温度提高了约9℃,维卡软化温度提高了约18℃;TDI-GO/TPU复合材料力学性能明显提高,与纯TPU相比,TDI-GO含量为0.5wt%的TDI-GO/TPU复合材料拉伸强度提高了近10 MPa,断裂伸长率提高了约32%。  相似文献   

11.
采用聚乙烯醇(PVA)交联对洋麻(KF)增强聚丙烯(PP)、棕榈(PF)增强聚丙烯(PP)复合材料进行改性,通过模压成型工艺制备KF/PP和PF/PP复合材料。研究不同交联方法对复合材料的结构和性能的影响,采用SEM、DMA等技术研究了改性对复合材料的界面结合及力学性能影响。结果表明:PVA协同偶联剂交联改性对天然纤维/PP复合材料的综合改性效果最好,当用5%PVA+3%偶联剂对KF/PP改性时,KF/PP复合材料的弯曲强度提升25.2%,弯曲模量提升35.49%,剪切强度提升28%,分别达到了50.90 MPa、5.76 GPa、5.4MPa。当用5%PVA+2%偶联剂对PF/PP改性时,PF/PP复合材料的弯曲强度提升31.46%,弯曲模量提升27.07%,剪切强度提升21.75%,分别达到44.33MPa、2.32GPa、5.18MPa。改性后KF/PP、PF/PP复合材料的含水率分别下降了46.89%、10.63%,吸水率分别下降了8.57%、6.12%。KF/PP改性后储能模量提高20.93%,PF/PP改性后Tg值由90.1℃上升到113.8℃。SEM表明:PVA协同偶联剂交联改性有效改善了纤维与PP间的粘结,纤维与PP间的界面结合得到改善。  相似文献   

12.
合成含柔性链段的大分子偶联剂,以此作为剑麻纤维(SF)/聚丙烯(PP)木塑复合材料的界面相容剂,研究其对复合材料力学性能、热性能、晶态结构和微观结构的影响,提出复合材料界面增容的机理。实验结果表明,经含柔性链段大分子偶联剂表面处理SF后,复合材料的界面相容性得到显著改善,冲击强度可达22.08kJ/m2,比未经偶联剂处理的复合材料提高了49.4%;热稳定性和PP相的结晶速率及结晶度有所提高,晶态结构无变化,仍是典型的α晶型。  相似文献   

13.
利用乙二胺功能化石墨烯(GS-EDA)为纳米填料,马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)弹性体为增韧剂,经熔融共混法制备了PP/POE-g-MAH/GS-EDA纳米复合材料。并采用红外光谱(FTIR)、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)、热失重分析(TGA)、力学性能、热变形温度和熔融指数测试分别对填料和所得纳米复合材料的结构和性能进行了测试和表征。研究表明,EDA已成功接枝于石墨烯的表面上;POE-g-MAH的酐基与GS-EDA的氨基发生了作用改善了共混体系的界面相容性并促进了GS-EDA在PP基体中的分散性。当GS-EDA含量为0.5%(质量分数)时,复合材料的拉伸强度、弹性模量和冲击强度分别较PP/POE-g-MAH提高了25.2%、32.5%和26.9%,此时复合材料的综合力学性能也最好。添加GSEDA提高了复合材料的结晶温度、熔融温度和结晶度。GS-EDA的加入使PP/POE-g-MAH/GS-EDA复合材料的热稳定性提高,而熔融指数逐渐降低。  相似文献   

14.
以热塑性聚氨酯(TPU)为基体、以经聚乙烯醇(PVA)功能化接枝改性的氧化石墨烯(Graphene Oxide)为填料,用熔融共混法制备GO-g-PVA/TPU复合材料,使用FTIR,DSC,DMA和拉伸性能测试等手段表征了填料和复合材料的结构与性能。结果表明,加入GO-g-PVA提高了TPU的结晶温度,当GO-g-PVA含量(质量分数,下同)为4%时GO-g-PVA/TPU的结晶峰温度比纯TPU提高了28.8℃。当GO-g-PVA的含量超过1%后GO-g-PVA/TPU复合材料的定伸应力随着GO-g-PVA含量的增而增大,表明GO-g-PVA的加入改善了TPU的拉伸性能。GO-g-PVA的加入显著改善了复合材料的储能模量与损耗模量,提高了形状固定率(Rf)。GO-g-PVA含量为4%时Rf为87.5%,比纯TPU提高了20%;随着GO-g-PVA的加入50℃时GO-g-PVA/TPU复合材料的形状回复率(R_r)呈下降趋势,但是在较高温度下比较低温度有更高的R_r值。  相似文献   

15.
以自制超支化分散剂(HBD)为改性剂,制备剑麻纤维(SF)/长玻纤(LGF)/聚丙烯(PP)复合材料,探讨超分散剂对SF/LGF/PP复合材料的力学性能、热性能、结晶性能的影响。采用扫描电镜(SEM)观察SF/LGF/PP复合材料的冲击断面形貌,分析纤维与聚丙烯树脂的界面相容性。实验结果表明,经HBD改性后的SF/LGF/PP复合材料的冲击强度、弯曲强度分别比未经分散剂改性的复合材料提高了35.2%和6%,复合材料的热稳定性、聚丙烯相的结晶速率和结晶度有所提高,HBD的加入使得复合材料的储能模量提高,损耗系数降低。  相似文献   

16.
以热塑性聚氨酯弹性体(TPU)和氢氧化铝(ATH)为主要原料,采用熔融共混法制备复合材料,着重研究了TPU/ATH复合材料的力学性能、热性能和燃烧性能。结果表明:ATH的加入量为20%时,处理的和未处理的ATH的共混体系300%拉伸强度达到最大,分别为8.87MPa和6.30MPa。ATH加入量大于10%时,复合材料的燃烧性能得到明显的改善。从DSC图谱上看,复合材料硬段的玻璃化转变温度、受热分解温度相比于纯TPU都有一定程度的提高。XRD实验结果表明ATH的加入增强了复合材料的结晶性,从而提高了复合材料的热稳定性。SEM照片显示:ATH含量小于20%时,ATH比较均匀的分布在共混体系中。当ATH含量为25%时,可以看到明显的团聚现象。  相似文献   

17.
MA-SEBS增容PP/SiO_2纳米复合材料的力学性能与结晶行为   总被引:1,自引:0,他引:1  
聚丙烯/二氧化硅(PP/SiO2)纳米复合材料具有优异的加工、力学、热稳定等性能。如何实现SiO2在PP基体中的均匀分散及提高两相的界面相容性是制备PP/SiO2复合材料的关键。文中利用马来酸酐接枝的氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(MA-SEBS)作增容剂,采用熔融共混和注塑成型的方法制备了PP/SiO2纳米复合材料;研究了MASEBS对PP/SiO2复合材料的力学性能、断面形貌及结晶行为的影响。结果表明:添加MA-SEBS显著提高了PP/SiO2复合材料的冲击强度,使SiO2在PP结晶过程中能更好地起到异相成核作用,提高了复合材料中PP相的结晶温度、降低了PP的球晶尺寸。  相似文献   

18.
PP/POE/滑石粉三元复合材料的研究   总被引:5,自引:0,他引:5  
研究了弹性体(POE)、滑石粉、偶联剂和填料处理方式对聚丙烯(PP)的力学性能、加工性能、结晶行为以及无机粒子在基体中分散形态的影响。结果表明,PP 2(K 7726)/POE(80/20)二元共混体系的综合性能较好;采用方式C(将两种偶联剂按1∶1的质量比,先加钛酸酯后加硅烷处理滑石粉)制得的PP 2/POE/T a lc(80/20/25)三元复合材料的力学性能比其它两种方式有显著提高。偏光显微镜(PLM)研究表明,方式C处理的滑石粉在体系中分散性最好;扫描电镜(SEM)显示,三元复合体系由PP 2/POE耗能少的空洞化断裂方式向耗能多的剪切屈服方式转变;DSC表明,采用方式C处理的滑石粉对聚丙烯的成核作用减弱。  相似文献   

19.
通过应用偏光显微镜、广角X射线衍射、差示扫描量热(DSC)等手段分析和表征了PP/PA6/nano-CaCO3聚丙烯三元复合材料共混体系各组分对其结晶性能的影响。研究发现,PA6、nano-CaCO3对改性聚丙烯复合材料均有诱导成核结晶的作用,加入nano-CaCO3的复合材料的诱导结晶作用要高于加入PA6的复合材料,同时复合材料的结晶温度和结晶速率得到提高。改性后的复合材料结晶度都有不同程度的下降,其中PP/PA6/POE-g-MAH的结晶度为31.83%,PP/PA6/nano-CaCO3/POE-g-MAH的为33.83%。  相似文献   

20.
采用DSC研究了聚丙烯(PP)及聚丙烯/硬石膏复合材料的非等温结晶动力学,对所得数据用修正Avrami方程的Jeziorny法和Mo法进行处理。结果表明:硬石膏的加入提高了PP的结晶温度Tp和结晶速率,降低了结晶活化能ΔE,使实际降温速率下PP更易结晶。同样的含量下,经铝酸酯偶联剂改性硬石膏使PP结晶速率加快,但ΔE有小幅上升。研究表明,硬石膏有异相成核作用,填加20%时异相成核多于填加10%时,铝酸酯偶联剂的改性对该作用无明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号