首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
高速列车通过隧道过程中引起隧道内压力的剧烈波动,会诱发车内压力波动并可能引起车体疲劳破坏等问题。而研究此类问题的基础在于快速准确预测隧道压力波。基于一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,对单车通过隧道和两列车隧道内交会进行数值模拟。选取京沪高速铁路隧道为研究对象,通过全时间区域下隧道空间中的压力传播的过程图描述压力波的形成过程,给出隧道内交会压力波比单车通过隧道的压力波剧烈的原因,研究列车速度和阻塞比对车外最大压力值和最小压力值的影响特性。结果表明,高速列车通过京沪高铁典型长度隧道时,其车体表面承受的最大压力波动基本与车速的平方成正比,而其与阻塞比基本呈线性关系。  相似文献   

2.
基于域动网格技术的列车外形对气动性能的影响研究   总被引:1,自引:0,他引:1  
为解决隧道与列车相对运动的问题,将域动网格技术应用到列车隧道效应研究中。通过建立高速列车隧道物理模型,采用有限体积法求解三维可压缩非定常流动模型以及双方程湍流模型,开展了高速列车穿越隧道时的非定常流场的数值模拟。研究了列车头型对列车尾涡的影响,列车头型对列车车身表面压力的影响,车长对列车摩擦阻力和列车压差阻力的影响。在计算结果的基础上对高速列车的头型和车长进行了评价。研究结果表明:列车头型的流线化程度越高,列车的气动阻力越小,列车尾涡涡心越低;列车长度对列车的压差阻力影响不大,对列车的摩擦阻力影响较大;通过数值计算得到的结果可以为列车头型的设计提供理论依据,为列车车长的定型和列车减阻提供参考。  相似文献   

3.
为解决隧道与列车相对运动的问题,将域动网格技术应用到列车隧道效应研究中.通过建立高速列车隧道物理模型,采用有限体积法求解三维可压缩非定常流动模型以及双方程湍流模型,开展了高速列车穿越隧道时的非定常流场的数值模拟.研究了列车头型对列车尾涡的影响,列车头型对列车车身表面压力的影响,车长对列车摩擦阻力和列车压差阻力的影响.在计算结果的基础上对高速列车的头型和车长进行了评价.研究结果表明:列车头型的流线化程度越高,列车的气动阻力越小,列车尾涡涡心越低;列车长度对列车的压差阻力影响不大,对列车的摩擦阻力影响较大;通过数值计算得到的结果可以为列车头型的设计提供理论依据,为列车车长的定型和列车减阻提供参考.  相似文献   

4.
李人宪  袁磊 《机械工程学报》2014,50(24):115-121
高速列车通过隧道时将会在隧道内引起相当复杂的气体压力波动,这是由于列车进入隧道时在隧道入口产生的压力波在隧道内来回传递并与列车经过时的气体压力扰动相互叠加的结果。从车体强度设计和列车运行安全性角度考虑,希望了解隧道内可能的最大气体正、负压力大小及其发生位置;气体压力波动与列车运行速度的关系。通过流体力学方程三维动态数值计算,仿真分析列车高速通过隧道的过程。计算结果证明了入口压力波效应与列车经过的扰动效应的叠加关系,得到列车通过时隧道内最大正压和最大负压发生的可能位置,以及最大正压值与最大负压值与车速间的关系式。可为高速铁路隧道和高速列车设计提供参考。  相似文献   

5.
高速列车隧道会车压力波动问题   总被引:3,自引:0,他引:3  
高速列车在隧道内会车有可能使列车侧壁上作用比明线会车时大得多的压力波动,原因是隧道入口压力波在隧道内来回传递并与会车形成的压力波叠加在一起形成复杂波系。列车上压力波如何变化,与隧道入口压力波有什么关系,可能达到多大的压力波极值,与会车速度是什么关系,这些一直是未能弄清楚的问题。通过计算流体力学三维数值分析,仿真计算列车在隧道内会车的动态过程,证明入口压力波效应与会车压力波效应的叠加关系,获得隧道内压力波在运动列车上的变化规律,得到隧道内可能的最大负压峰值计算式及其与会车速度的关系式,可为高速铁路隧道和高速列车气动设计提供参考。  相似文献   

6.
高速列车通过隧道时产生的压力瞬变会引发车内压力波动,对司乘人员的耳感舒适性有重要影响。影响压力瞬变的主要因素有列车速度、阻塞比和隧道长度。特长隧道和中长隧道两种条件下的压力瞬变和车内压力波动的特性是不同的。为考察我国采用单一时间间隔内最大压力变化量研判司乘人员耳感舒适性的适用性,有必要研究高速列车通过特长隧道时车内压力波动特点。基于一维可压缩不等熵非定常流动模型的广义黎曼变量特征线法和我国隧道断面参数特点,研究单车通过简单结构特长复线隧道内时的压力波特性,归纳隧道长度、列车速度和气密指数对车内压力变化的影响特性,分析隧道长度下不同时间间隔的最大压力变化量的最大值变化趋势,获得特长隧道下车内压力变化规律及特殊性问题。参照欧洲压力舒适性标准,分析耳感不适问题的特征,得出在特长隧道条件下采用多时间间隔压力变化阈值评价耳感舒适性问题的必要性。  相似文献   

7.
由于高速列车气动载荷是隧道会车时列车行车安全的重要因素之一,而其在实车试验中又难以测量,提出采用基于计算流体力学的数值模拟方法。通过空气动力学仿真获取列车的表面压力分布,对列车压力和粘性力积分合成,得到列车的气动载荷,即阻力、侧向力、升力、侧滚力矩、点头力矩和摇头力矩。全面分析了气动载荷的构成和变化特点,及其在不同速度下的变化特性。结果表明,列车隧道会车时,气动载荷主要是由压力构成;列车在隧道会车时气动载荷出现剧烈波动;气动载荷的幅值与速度呈二次函数的变化规律。研究结果可为列车系统动力学分析提供气动载荷依据。  相似文献   

8.
列车高速过隧道时诱发的压力波通过新风口传入车内,给旅客乘车舒适性带来严重影响。为验证高速列车隧道通过时空调系统的工作性能和探究车内流场的变化规律。构建列车车厢与空调管路系统的整体模型,基于计算流体力学方程,利用有限体积数值求解方法,引入数值传热项,模拟分析高速列车通过隧道时新风口压力变化对客室内流场产生的影响。结果表明:隧道通过时空调换气系统中的压头风机能有效抑制外界压力波动,使车内压力变化很小;车内温度变化范围在(297~299)K之间,满足舒适性要求;新风口压力的突然变化有可能导致客室内风速变化,变化幅值均小于0.5m/s,满足舒适性要求。可为高速列车空调系统的改进提供理论依据。  相似文献   

9.
应用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,研究中国标准动车组CR400AF单列车通过隧道时的空气阻力。详细分析高速列车通过隧道时空气阻力与列车周围空气压力、空气流速及压缩波和膨胀波传播叠加三者间的关系,揭示高速列车通过隧道时空气阻力的变化特征。研究隧道长度、阻塞比、车速及列车长度对高速列车通过隧道(尤其长大隧道)时空气阻力的影响规律。结果表明,研究高速列车隧道压力波时,只需要考虑列车驶入驶出隧道诱发的压缩波和膨胀波的反射和叠加;而在研究列车空气阻力和列车周围空气流速时还必须同时考虑压缩波和膨胀波的传播方向。单列车通过隧道的空气阻力均随隧道长度、阻塞比、车速和列车长度增大而增大。特长隧道时,各因素按其影响程度由大到小排列依次为车速、列车长度、阻塞比和隧道长度。其中,平均空气阻力与车速的2次方、与阻塞比的0.60~0.79次方、与隧道长度的0.02次方近似成正比。  相似文献   

10.
采用流体力学数值计算软件FLUENT对我国某新型动车组横风条件下的空气动力学性能进行了数值仿真.研究了不同横风风速下,直线上两列高速列车同向并行运行时的空气动力性能,并与单车运行时情况进行了对比.计算结果表明三种情况下,双车并行运行时的迎风侧车身受到的纵向气动阻力最大,背风侧车体受到的纵向气动阻力最小;相同列车速度和横风速度下,单车运行时横向气动力最大,双车并行运行时,背风侧车体受到的气动力最小.  相似文献   

11.
高速列车会车压力波对侧窗的影响   总被引:7,自引:1,他引:7  
高速列车会车时产生的空气压力波动会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。以三维、非稳态、粘性雷诺时均方程和k-ε两方程紊流模型为基础,采用移动网格的有限体积数值计算方法,仿真分析5种车速(200km/h、250km/h、300km/h、350km/h、400km/h)条件下明线和长隧道内等速会车的动态过程。得到侧窗上完整的会车压力波变化曲线。计算结果表明,明线会车与长隧道内会车产生的压力波对列车侧窗的影响有很大的不同,长隧道内会车时在交会车辆侧窗上产生的气动负压波峰值比明线会车时产生的负压波峰值要大将近一倍,因此不能将明线上会车压力波变化结论外推到隧道内会车情况。以计算结果为基础,分析会车引起破窗的原因和评价侧窗强度的方法。在进行高速列车侧窗设计时,不但要考虑窗玻璃本身的抗冲击强度,还必须考虑列车侧窗的安装强度。相同面积的侧窗,周长大的车窗更有利。  相似文献   

12.
In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe’s FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the strain passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e. impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.  相似文献   

13.
为研究低压环境下真空管道高速列车的气动特性,建立低压环境下真空管道高速列车空气动力学计算的流体模型、数学模型和数值模型,研究管道压力(1.01×103~1.01×104 Pa)、阻塞比(0.2~0.7)和列车速度(600~1 000 km/h)对真空管道高速列车的阻力系数、气动阻力和气动热效应的影响。计算结果表明,在低压(1.01×103~1.01×104 Pa)环境下,真空管道中的空气流动可以采用连续介质模型描述,真空管道高速列车的绕流流场采用三维可压缩Navier-Stokes方程描述。高速列车的摩擦阻力系数远小于压差阻力系数,压差阻力系数和气动阻力系数基本上与管道压力和列车速度无关,而主要依赖于阻塞比。高速列车的气动阻力与管道压力近似呈线性关系,与列车速度近似成平方关系,且随着阻塞比的增加而增大。列车表面的最大温度基本上与管道压力无关,而主要由列车速度和阻塞比决定。  相似文献   

14.
张亮  张继业  李田 《机械工程学报》2017,53(22):152-159
为改善高速列车明线运行时的气动性能,基于伴随方法和径向基函数网格变形技术,开展高速列车头型气动优化设计。采用径向基函数网格变形技术,避免列车头型优化过程中的网格重复生成,提高头型优化的效率。通过伴随方法求解目标函数对列车头型的敏感度,无须定义任何的头型设计变量,避免人为指定设计变量对优化结果的影响。将网格变形技术、伴随方法及计算流体动力学(Computational fluid dynamic,CFD)方法相结合,构建高速列车头型优化设计流程,选取整车气动阻力和尾车气动升力为优化目标,对高速列车头型进行多目标气动优化设计。结果表明:伴随方法可以有效地应用于高速列车的头型优化;优化后,在满足约束条件的情况下,列车的整车气动阻力减小2.83%,尾车气动升力减小25.86%;气动阻力减小主要位于头尾车流线型部位,中间车和头尾车车体气动阻力基本保持不变;尾车气动升力减小主要位于流线型部位,尾车车体向下的升力绝对值也有所减小。  相似文献   

15.
Impulse waves are micro-pressure waves, which always occur at the tunnel exit when a high-speed train is moving inside a train tunnel. The air around the train nose is compressed and compression waves are induced. The impulse wave is discharged at the exit of a train tunnel when a compression wave propagates outside of the tunnel exit. Impulse waves are weak-strength pressure waves, which lead to noise and other environmental problems. In order to efficiently control the impulse wave at the exit of a train tunnel, numerical studies on investigating the generation and propagation of the impulse wave were carried out. A 2-D axisymmetric model tunnel was simulated at different operating conditions. Different Mach numbers of compression waves were varied to induce different magnitudes of impulse waves at the tunnel exit. In addition, compression waves with different pressure gradients were assumed at the tunnel entry to check their effects on the generation of impulse waves. In order to observe impulse waves at far field, five monitor points were installed behind the tunnel exit to record pressure histories as impulse waves moved through these locations. The detailed magnitudes and characteristics of impulse waves were obtained in the present studies.  相似文献   

16.
The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.  相似文献   

17.
为改善高速列车气动性能,建立一套高效的多目标气动优化设计方法,对流线型头型进行多目标气动优化设计。建立高速列车流线型头型三维参数化模型,并提取5个优化设计变量;为减少优化设计时间,利用最优拉丁超立方设计方法在优化设计空间中进行均匀采样,利用计算流体力学方法获得对应于各个采样点的气动载荷,利用Kriging代理模型构建优化设计变量和气动载荷之间的近似模型;利用多体系统动力学方法计算气动载荷作用下的高速列车轮重减载率;以气动阻力和轮重减载率为优化目标,利用多目标遗传算法NSGA-II对高速列车流线型头型进行多目标优化。优化设计变量和优化目标均呈现收敛的趋势,采用Kriging近似模型优化计算的Pareto前沿与采用CFD(Computational fluid dynamics,CFD)优化计算的Pareto前沿较为接近。优化后高速列车的气动阻力最多可降低3.27%,轮重减载率最多可降低1.44%,气动阻力最优的头型与轮重减载率最优的头型的主要差异在于中部辅助控制线的变化,前者向内凹,后者则向外凸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号