首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用溶胶-凝胶法,以硝酸镧和钛酸丁酯为原料,以活性炭纤维为载体,制备了镧掺杂TiO2/ACF复合材料,通过紫外灯照射,对甲醛气体进行光催化降解,考察材料的光催化活性。结果表明:镧的掺杂能够提高TiO2/ACF复合材料的光催化活性。当焙烧温度为400℃,镧的掺杂量为2%(摩尔分数)时,材料的光催化活性达到最佳效果。  相似文献   

2.
La、Fe共掺杂TiO2/膨润土的制备及其光催化性能   总被引:1,自引:0,他引:1  
陈勇  谷锦  陈鹏  张静静  陈超 《功能材料》2013,(20):3003-3006,3011
采用超声辅助溶胶-凝胶法制备了La、Fe共掺杂TiO2/膨润土复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱和紫外-可见漫反射吸收光谱(DRS)等测试技术对其进行了表征分析。在紫外光照射下,通过对TNT废水的光催化降解,考察其光催化活性。结果表明,La、Fe的共掺杂抑制了TiO2的晶型转变和晶粒生长,增强了复合材料的吸光性能;适量的La、Fe共掺杂能提高复合材料的光催化性能,当La与Fe的掺杂量分别为0.5%和0.05%(摩尔分数),煅烧温度为400℃时,其光催化活性达到最佳效果。  相似文献   

3.
采用超声强化溶胶-凝胶法,以无水乙醇和钛酸丁酯为前驱体,选取石英砂作为载体,制备了 La、Fe共掺杂TiO2/石英砂复合光催化材料.通过XRD、UV-Vis和SEM等测试手段对复合材料的微观结构和理化性质进行了表征分析,并选取 TNT 废液作为目标污染物,考察复合了光催化材料的光催化性能.结果表明,在紫外光照射下,适量的La、Fe共掺杂能够提高 TiO2/石英砂的光催化活性.当 La 掺杂量为1.0%(摩尔分数),Fe 掺杂量为0.25%(摩尔分数),焙烧温度为450℃时,复合材料的光催化性能最佳.  相似文献   

4.
铁掺杂纳米TiO2的制备及其光催化性能研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了掺杂Fe3 的纳米TiO2微粒,采用X光衍射仪对粉体进行了表征.以甲基橙为目标降解物,研究了Fe3 掺杂纳米TiO2光催化性能.结果表明,掺杂适量Fe3 能够提高TiO2的光催化活性,当Fe3 的掺入量为摩尔比0.41%时催化活性最高.以紫外灯为光源,降解初始浓度为20mg·L-1的250mL甲基橙溶液,催化剂0.41%(摩尔分数)Fe3 -TiO2投加量为0.5g时,甲基橙的光催化降解效果最好.  相似文献   

5.
活性炭负载TiO2光催化材料的研究   总被引:2,自引:0,他引:2  
活性炭(AC)及活性炭纤维(ACF)作为光催化剂载体具有较高的比表面积和较强的吸附性能,可以有效提高负载型光催化剂TiO2/AC和TiO2/ACF对有机污染物的光催化降解效率.首先介绍了TiO2光催化剂的结构特性以及各种掺杂改性方法,对负载型TiO2/AC及TiO2/ACF光催化剂的各种制备方法进行了详细评述.在此基础上,讨论了影响有机污染物光催化降解性能的重要因素,指出了负载型TiO2光催化材料研究中有待解决的问题和发展方向.  相似文献   

6.
结合溶胶-凝胶法、静电纺丝技术和高温煅烧制备了La3+掺杂TiO2纳米纤维.采用扫描电子显微镜、X射线能谱仪、比表面积及孔隙分析仪、X射线衍射仪和紫外分光光度计对纳米纤维的形貌、晶型、表面和孔隙结构以及光催化性能进行了表征和测试.结果表明,La3+掺杂TiO2纳米纤维表面为多孔的纤维状结构.La3+掺杂明显改善了TiO2纳米纤维的表面孔隙结构,对TiO2纳米纤维的粒子生长有一定的抑制作用.光催化降解性能测试结果表明,当La3+掺杂量为0.04%(质量分数)时,TiO2纳米纤维的光催化性能最佳.  相似文献   

7.
冯启明  董发勤  王维清  蒲思川 《功能材料》2012,43(15):2091-2094,2097
利用溶胶-凝胶法,在室温条件下,以钛酸四丁酯、硝酸镧为主要原料,无水乙醇为溶剂,冰醋酸为抑制剂,浓硝酸为催化剂制得稳定的掺La3+TiO2溶胶,陈化后的凝胶经不同温度煅烧3h后制得不同掺La3+量的TiO2。通过XRD对不同煅烧温度及不同掺La3+量的TiO2进行了表征;以紫外光为光源,研究了掺La3+-TiO2对甲基橙溶液的光降解效果。用化学共沉淀法制备了具有强磁性的Fe3O4水基磁流体,再与La3+掺杂TiO2进行复合,制备了Fe3O4负载量不同的磁性La3+掺杂TiO2,研究了Fe3O4负载量不同的La3+掺杂TiO2对甲基橙的光催化降解效果、磁分离回收率的影响。结果表明,掺La3+量及煅烧温度对TiO2的晶型、各晶型TiO2的相对含量及对甲基橙的光降解效果均有影响。La3+掺杂TiO2比纯TiO2显示出更强的光催化性能,掺La3+量2%,热处理温度450℃的La3+掺杂TiO2光催化活性最高。Fe3O4负载量为10%的Fe3O4/La3+-TiO2对甲基橙的降解率8h时为99.4%;磁分离回收率达97.39%。  相似文献   

8.
以硝酸镧、天然电气石(Tourmaline,简称T)和钛酸丁酯为原料,采用溶胶-凝胶法制备掺杂电气石和稀土La的TiO2复合光催化薄膜样品。用正交试验方法对影响该薄膜样品光催化性能的制备工艺进行优化,并通过紫外可见光谱对复合薄膜样品的吸收光谱进行分析。结果表明,掺杂稀土元素La可使TiO2的光吸收范围发生红移,掺杂电气石将增强La/TiO2光吸收强度,T/La/TiO2复合光催化薄膜最佳制备工艺为:La3+掺杂量为1.2%(wt,下同)、电气石掺杂量为0.8%、焙烧温度为500℃、焙烧时间为1.5h、负载次数2次,样品的的甲醛降解率可达82.5%。  相似文献   

9.
采用超声强化溶胶-凝胶法,以硝酸镧和钛酸丁酯为前驱体,选取石英砂作为载体,制备了La掺杂TiO2/石英砂复合光催化材料,通过XRD、DSC-TG和SEM等测试手段对复合材料的结构和理化性质进行了表征分析,并选取TNT废液作为目标污染物,考察复合了光催化材料的光催化性能。结果表明,在紫外光照射下,适量的镧掺杂能够提高TiO2/石英砂的光催化活性,当镧掺杂量为1.5%(摩尔分数),焙烧温度为400℃时,复合材料的光催化性能最佳。  相似文献   

10.
以轻质、多孔的膨胀珍珠岩(expanded perlite,EP)为载体,采用溶胶-凝胶法制备了一系列Fe、Tb单掺杂及共掺杂TiO2/EP漂浮型复合光催化剂,并通过XRD和SEM等分析方法对其结构进行表征,以罗丹明B溶液为目标降解物,研究所制备样品的光催化活性。结果表明:TiO2以纳米颗粒的形式牢固负载在EP薄片表面,内部具有蜂窝状多孔结构的EP为TiO2提供高浓度的三维降解环境;Fe、Tb共掺杂对纳米TiO2的晶型转变有较强的抑制作用,减小了晶粒粒径,有效提高了TiO2光催化活性,当Fe-Tb-Ti的摩尔比为0.02∶0.02∶1,催化剂用量为10g/L,罗丹明B溶液的降解效率最高,降解率可达89.2%。  相似文献   

11.
为了研究双微乳液法在制备纳米级光催化剂的应用,以TiCl4和NH3.H2O为原料,采用十六烷基三甲基溴化铵-正丁醇-环己烷-水微乳体系制备Fe3+掺杂纳米TiO2,对粉末的晶体结构进行X射线衍射表征,并以其对p-甲酚的降解考察其光催化活性。结果表明,在较小的掺杂量时,Fe3+掺杂量的提高可以提高TiO2的光催化活性,进一步提高掺杂量将引起光催化活性的降低;掺杂Fe3+可导致纳米TiO2的粒径减小;Fe3+的半径较小以及Fe2O3的熔点较低均有利于TiO2从锐钛矿向金红石的相变;当Fe3+掺杂摩尔分数为0.06%,煅烧温度为550℃时,纳米TiO2的光催化活性最高,此时形成TiO2的锐钛矿和金红石相的混晶;乳液中含水量也会影响晶相的组成和粒径大小,随着含水量增加产物中出现了一定比例的金红石相。  相似文献   

12.
以苯酚为模拟污染物,考察了不同晶型、溶液初始pH值、反应物初始浓度、氧气的协同作用对TiO2悬浮体系光催化活性的影响;并将TiO2负载到活性炭纤维上,制备了固定体系的TiO2/ACF复合催化剂.结果表明,具有混晶结构的P25降解速率比纯锐钛矿TiO2快;溶液pH=6及苯酚初始浓度为150 mg/L时,降解速度最快;通入氧气,可以提高催化剂活性;光催化降解苯酚表明,TiO2/ACF复合催化剂具有较好的光催化活性.  相似文献   

13.
以活性炭纤维(ACF)为载体,采用溶胶-凝胶法制备活性炭纤维负载二氧化钛复合材料(TiO_2/ACF)。以甲基橙为模型化合物,研究TiO_2/ACF对染料废水的光催化降解活性,考察光照时间、溶液初始浓度、pH值、光强、重复使用次数等因素对甲基橙溶液去除率的影响。结果表明,TiO_2/ACF对甲基橙废水具有较好的光催化降解活性和重复利用性,ACF吸附和TiO_2光催化产生了协同作用。  相似文献   

14.
以硫酸钛为钛源,Hβ分子筛为载体,La为掺杂元素,采用共沉淀法制备了La-TiO2/Hβ复合光催化剂,并以亚甲基蓝的光催化降解为探针反应,评价了其光催化性能。结果表明,催化剂适宜的制备条件是:TiO2负载量为30%(wt),La掺杂量为0.5%(mol),老化时间为24h,焙烧温度为800℃。当用2.4g/L催化剂样品处理20mg/L的亚甲基蓝溶液时,降解率达95.1%。  相似文献   

15.
谷锦  张静静  陈勇  高峰 《功能材料》2012,(Z2):213-215,221
以钠基膨润土为载体,钛酸丁酯和硝酸镧为原料,采用溶胶-凝胶法制备镧掺杂TiO2/膨润土复合光催化剂,采用X射线衍射(XRD)和红外光谱(IR)对复合催化剂进行了表征,在紫外光照射下,通过对TNT废水的光催化降解,考察其光催化活性。实验结果表明,掺杂镧与未掺杂镧的TiO2/膨润土复合光催化剂中TiO2主要以锐钛矿型存在;掺杂镧的TiO2/膨润土复合光催化剂的光催化性能明显优于未掺杂镧的TiO2/膨润土复合光催化剂,当镧的掺杂量为1%(原子分数),焙烧温度为500℃时,其光催化活性达到最佳效果。  相似文献   

16.
以胶原纤维为模板分别负载钛(Ti4+)或钛(Ti4+)和镧(La3+),经高温煅烧制得介孔TiO2和La x/TiO2纳米纤维。通过场发射扫描电镜(FESEM)、N2吸附-脱附等温线、X射线衍射(XRD)、分子荧光光谱(PL)和紫外-可见吸收光谱(UV-Vis)等对这2类纳米纤维的结构和物理性能进行了表征。结果表明胶原纤维的纤维状结构能被较好地保留在TiO2和La x/TiO2纳米纤维中。TiO2和La x/TiO2纳米纤维的N2吸附-脱附等温线属于典型的Ⅳ型,表明其具有介孔结构。XRD分析表明,La3+的掺杂减小了TiO2的晶粒尺寸。与Degussa P25相比,介孔TiO2和La x/TiO2(x≤0.02)纳米纤维的紫外-可见吸收光谱红移,分子荧光光谱强度明显减弱。以孔雀石绿的光催化降解为模型反应,在可见光和紫外光激发下,介孔TiO2和La x/TiO2纳米纤维的光催化活性均高于Degussa P25。此外,La x/TiO2在可见光激发下的光催化活性高于未掺杂的TiO2纳米纤维。  相似文献   

17.
掺Fe3+附银二氧化钛光催化剂的制备及其光催化活性研究   总被引:1,自引:0,他引:1  
采用酸催化溶胶-凝胶法和光化学沉积法相结合制备出了掺Fe3 附Ag纳米TiO2复合粒子,用TEM、XRD、XPS、UV-vis等技术进行了表征.结果表明:纳米粒子粒径约为10~15nm;Fe3 的掺杂能促进TiO2由锐钛矿相向金红石相的转变;改性后的TiO2对光的吸收发生红移,吸收强度明显增大;XPS分析表明附载在TiO2表面的银以Ag0形式存在.以紫外光为光源,甲基橙为目标降解物,评价了催化剂的光催化活性,实验表明,掺Fe3 附Ag的TiO2比纯TiO2及仅掺Fe3 或仅附Ag的TiO2能显示出更高的光催化活性;且掺Fe3 0.4%、附银1%(摩尔分数)的催化剂的光催化活性最高.  相似文献   

18.
以钛酸四丁酯为前驱物,无水乙醇为溶剂,聚乙二醇200为分散剂,三乙醇胺为抑制剂,采用溶胶-凝胶法制备了锐钛矿型硫镧共掺杂纳米TiO2(SLa-TiO2),通过透射电镜(TEM)、X射线衍射(XRD)、紫外-可见光谱(UV-Vis)等对材料的结构形貌进行了表征分析。并以甲醛作为目标污染物,研究了材料在不同光源照射条件下对甲醛的催化降解性能与机理。实验结果表明,S与La共掺杂提高了纳米TiO2在紫外光和可见光照射下的光催化活性,所制备的S-LaTiO2是一种性能良好的甲醛降解材料。在La的含量一定时,随S含量增加,材料对甲醛的降解率先增大后减小,当样品中各元素物质的量之比n(S)∶n(La)∶n(Ti)为1∶0.01∶1时的降解效果最好。  相似文献   

19.
以钛酸四丁酯和硝酸镧为原料,采用溶胶-凝胶法制备了La掺杂摩尔分数为2%的纳米TiO2,以TNT为目标降解物,研究了热处理方式对TiO2光催化性能的影响。结果表明:样品光催化性能最佳的热处理温度为500℃,升温速率为10℃/min,活化时间为2h,60min内对TNT的去除率达到了96%。  相似文献   

20.
卢旭东  姜承志  侯雪  董多 《功能材料》2012,43(24):3393-3397,3401
采用溶胶-凝胶法制备了纯TiO2,1%Sm3+或2%Gd3+单掺杂和1%Sm3+/2%Gd3+共掺杂TiO2复合粉体,采用XRD和SEM/EDAX等技术进行表征。以对亚甲基蓝的光催化降解为目标反应,评价了TiO2复合粉体的光催化活性,探讨了Sm3+/Gd3+共掺杂、亚甲基蓝初始浓度和粉体投加量对TiO2粉体光催化活性的影响机制。结果表明,Sm3+/Gd3+共掺杂可以显著提高TiO2粉体的光催化活性;Sm3+/Gd3+共掺杂在TiO2粉体中产生协同作用,抑制了TiO2由锐钛矿相向金红石相转变,使TiO2粒径尺寸减小,增大了TiO2的晶格畸变。当亚甲基蓝初始浓度为4mg/L和粉体投加量为2g/L时,TiO2复合粉体的光催化活性最高,对亚甲基蓝光催化降解率达99.71%;降解亚甲基蓝反应符合Langmuir-Hinshelwood动力学方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号