共查询到19条相似文献,搜索用时 62 毫秒
1.
点云数据拼接在逆向工程、计算机视觉、医学图像处理等方面有着十分广泛的应用。为了更快、更精确地进行点云数据拼接,根据计算机点云数据拼接处理的要求,结合空间坐标组合变换和矩阵变换的原理,提出了一种基于最小二乘法采用多个标志点计算坐标转换矩阵的点云数据拼接方法。通过实例对当前几种常用的典型的拼接方法进行分析比较的结果表明,利用该方法实现点云数据的拼接,具有速度快、精度高、稳定性好、操作简单等特点,非常适合于工程实际应用。 相似文献
2.
《计算机应用与软件》2017,(8)
对于视差图像拼接,现有的工作大都采用单应性变换,这不足以得到好的拼接结果。提出一个新的视差图像拼接算法。首先检测图像的特征点并匹配,随后用随机采样一致算法RANSAC(Random Sample Consensus)和距离相似性筛选出正确的匹配点集;其次,以这些特征点结合移动最小二乘法构造一个全局仿射变换对准图像;最后,在图像的重叠区域以像素为顶点构建一个网络流,用最大流最小割算法寻找最优拼接曲线,并融合图像。由于提高了特征点匹配的正确性,对准模型的准确性明显好于以前的工作,图像拼接结果平滑真实,无扭曲、鬼影等现象。 相似文献
3.
4.
针对传统ICP(iterative closest point)算法在收敛速度或拼接精度上无法同时满足实时测量要求的问题,提出了一种适用于单、双目结构光三维测量系统的快速且高精度的点云拼接算法。该算法首先将参考视点云上的采样点反向投影到目标视点云的2D成像平面上,然后再将2D反向投影点正向投影到目标视点云上,展示了一种由目标视投影点到采样点法线上的投影直至收敛于线—面交点的迭代过程。实际测量结果表明,该算法在保证拼接精度的同时显著提高了收敛速度,是一种具有很高实用价值的拼接算法。 相似文献
5.
6.
图像拼接是是一种重要而实用的计算机技术,好的拼接算法离不开鲁棒的参数估计方法。尺度总体最小二乘方法作为一种新的线性模型参数估计方法,它是最小二乘,数据最小二乘与总体最小二乘方法的直接推广与统一体,具有良好的估计性能。考虑到观测数据中外点的存在将可能导致参数估计失效,我们首次将RANSAC方法与尺度总体最小二乘结合起来用于图像拼接问题,实验表明,该方法具有优良的性能,值得推荐。 相似文献
7.
移动最小二乘法研究进展与述评 总被引:5,自引:1,他引:4
为使移动最小二乘法能更好地应用到无网格方法中,详细阐述移动最小二乘逼近法、移动最小二乘插值法、MUKHERJEE改进的移动最小二乘法以及程玉民等提出的改进的移动最小二乘法和复变量移动最小二乘法等的研究进展,述评各种移动最小二乘法的优缺点,并概述各种移动最小二乘法形成的无网格方法的研究进展. 相似文献
8.
随着计算机图形图像技术、机器视觉、虚拟现实技术等的发展,近年来,通过室外场景的序列图像进行三维重建的方法逐渐成为计算机视觉和图形学等相关领域的重点研究方向。但是,通常在图像的采集过程中由于受到测量设备和环境的影响,单次拍摄的序列组图可能并不能提取到足够的物体表面信息,导致不能够完成三维物体的重构,而不能为后续的目标识别和精确打击提供准确信息依据。针对此类问题,文中采用融合多组图像点云的方法,先利用彩色直方图匹配补充补拍图像序列,然后单独解算补拍组图的点云数据,再对不同点云的重叠部分利用改进的迭代最近点算法计算变换参数,最后进行融合处理,从而完成不同组图的点云数据间的配准和融合工作。实验证明,该方法能快速有效补充用于重构的点云数据,拼接和融合效果良好。 相似文献
9.
移动最小二乘法在多功能传感器数据重构中的应用 总被引:3,自引:0,他引:3
针对传统最小二乘法全局拟合的局限性, 将一种新型的数值算法---移动最小二乘法应用于非线性多功能传感器的信号重构. 通过详细研究插值函数的构造方法及性质, 合理地选取基函数和权函数, 求出试函数的系数, 进而得到信号的重构值. 详细分析了基函数维数、影响域节点数及权函数因子对计算结果的影响, 并对最小二乘法以及移动最小二乘法的重构数据进行了对比, 重构的相对误差分别小于 15.3 % 和 1.03 %, 结果表明移动最小二乘法更适合非线性曲面拟合, 且适当地增加基函数维数或影响域节点数可以进一步提高数据重构的精度. 相似文献
10.
11.
12.
文物点云模型的优化配准算法* 总被引:1,自引:0,他引:1
目的 针对带有噪声的文物点云模型,采用一种由粗到细的方法来实现其断裂面的精确配准。方法 首先采用一种变尺度点云配准算法实现粗配准,即配准测度函数的尺度参数由大到小逐渐变化,可避免算法陷入局部极值,并获得较高精度的初始配准结果。然后采用基于高斯概率模型的改进迭代最近点(iterative closest point, ICP)算法进行细配准,可以有效地抑制噪声对配准结果的影响,实现断裂面的快速精确匹配。结果 采用兵马俑文物碎块的配准结果表明,该优化配准算法能够实现文物断裂面的精确配准,而且在细配准阶段取得了较高的配准精度和收敛速度。结论 因此说,该优化配准算法是一种快速、精确、抗噪性强的文物点云配准方法。 相似文献
13.
针对传统点云配准算法精度低、鲁棒性差以及放疗前后癌症患者无法实现精确放疗的问题,提出一种基于残差注意力机制的点云配准算法(ADGCNNLK)。首先,在动态图深度卷积网络(DGCNN)中添加残差注意力机制来有效地利用点云的空间信息,并减少信息损失;然后,利用添加残差注意力机制的DGCNN提取点云特征,这样做不仅可以在保持点云置换不变性的同时捕捉点云的局部几何特征,也可以在语义上将信息聚合起来,从而提高配准效率;最后,将提取到的特征点映射到高维空间中并使用经典的图像迭代配准算法LK进行配准。实验结果表明,所提算法与迭代最近点算法(ICP)、全局优化的ICP算法(Go-ICP)和PointNetLK相比,在无噪、有噪的情况下配准效果均最好。其中,在无噪情况下,与PointNetLK相比,所提算法的旋转均方误差降低了74.61%,平移均方误差降低了47.50%;在有噪声的情况下,与PointNetLK相比,所提算法的旋转均方误差降低了73.13%,平移均方误差降低了44.18%,说明所提算法与PointNetLK相比鲁棒性更强。将所提算法应用于放疗前后癌症患者人体点云模型的配准,从而辅助医生治疗,并实现了精确放疗。 相似文献
14.
针对部分重叠的两片点云配准效率低、误差大等问题,提出了一种基于重叠域采样混合特征的点云配准算法。首先,通过编码和特征交互的方式预测每个点的重叠分数,获得更丰富的点云特征。其次,提取重叠点的局部几何特征,基于重叠分数和点特征的显著性保留重叠关键点。最后,利用重叠关键点的几何信息和空间信息构建混合特征矩阵,计算矩阵的匹配相似度,采取加权奇异值分解运算得到配准结果。实验结果表明,该方法具有较强的泛化能力,能在保证配准效率的同时显著提升点云配准精度。 相似文献
15.
16.
约束改进的ICP点云配准方法 总被引:1,自引:0,他引:1
提高配准速度和精度是点云配准研究的重点。提出一种距离约束改进的迭代邻近点算法,针对邻近点法中找到的配准点,采用最近原则排除含相同点的点对;使用配准点重心作为参考点,结合点对距离约束排除误配准点对后进行点云配准;与使用点云重心作为参考点的方法和迭代邻近点算法进行了比较。实验结果表明,在配准速度和精度方面,提出的算法都有了提高,实现了点云的快速、准确配准。 相似文献
17.
针对多平面结构的物体,传统的点特征点云配准方法存在鲁棒性差、易收敛到局部最优解等问题,提出了一种基于法向量投票的点云配准方法。用平面特征代替点特征作为配准基元,建立基于平面的坐标转换模型。首先构建kd-tree,计算各点的法向量,并将法向量转换到霍夫空间进行投票,提取平面特征;然后将单位四元数作为特征描述算子,以同名平面特征作为约束条件,根据最小二乘平差原则,求解点云之间的位姿变换关系。实验结果表明:相较于其他两种方法,提出方法对初始位置没有依赖性,在配准过程中可以有效避免局部最小陷阱,并且配准精度得到了提高。 相似文献
18.
提出了一种基于二次误差的特征描述子,该特征描述子具有旋转不变性。通过提取点的二次误差和邻域点二次误差得到两种特征描述子。基于高斯混合模型的点云配准算法层出不穷,主要原因是概率模型在噪声和离群值方面具有更好的鲁棒性,然而该类方法对于尺度较大的旋转表现并不好,为此将二次误差特征描述子作为高斯混合模型的局部特征优化了高斯混合模型较大旋转中的配准效果,并提出基于双特征的配准策略优化了单一特征的缺陷。通过实验与鲁棒的ICP(iterative closest point)以及流行的基于特征的配准算法在配准效率和配准精度方面进行对比,效率是鲁棒性ICP的3~4倍。在大尺度的旋转中提出的算法具有良好的鲁棒性并且优于大多数流行的算法。 相似文献
19.
逆向工程中经常需要把多次测量得到的点云进行配准。提出了一种基于特征点的改进ICP算法,在采用主方向贴合法实现初始配准的基础上,使用曲率特征点和k-dtree寻找最近点,提高了ICP算法的效率。该算法具有速度快精确度高的特点,并且在实际应用中验证了配准效果和算法稳定性。 相似文献