首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron oxide red (IOR) is a kind of byproduct from spray pyrolysis treatment process of pickling waste liquid. In this project, manganese oxide and manganese cerium co-oxide were loaded onto the surface of IORto prepare IOR supported manganese oxide (Mnx/IOR) and IOR supported manganese-cerium co-oxide (Mnx-Cey/IOR) catalysts by a simple combustion method. Low temperature NH3-selective catalytic reduction (NH3-SCR) denitrification properties of the synthetic catalysts were studied. XRD, SEM, EDS, TEM, BET, XPS, H2-TPR and NH3-TPD were used to characterize the physiochemical properties of the catalysts. The results show that during the combustion process for preparing Mnx/IOR catalyst, MnOx, almost all in amorphous phase, can be well distributed on the surface of the IOR carrier. The NOx conversions of Mnx/IOR catalyst gradually increase with the increase of MnOx loading amount within a specific working temperature range (<200 °C). When MnOx loading amount x is 0.43, the NOx conversion is up to 85% at most. The low temperature NH3-SCR activity of Mnx/IOR catalyst can be enhanced remarkably by introducing cerium. The NOx conversions of Mn0.43-Cey/IOR catalyst at the operating temperature range (<200 °C) increase steadily with the cerium adding amount increasing. All the Mn0.43-Cey/IOR catalysts show excellent denitrification efficiency (more than 90%) at about 160 °C. Compared with Mn0.43/IOR catalyst, Mn0.43-Ce0.1/IOR shows excellent denitrification performance and application prospect because of its higher manganese valence state, enhanced redox capacity, larger specific surface area, and significantly improved surface acidity and anti-SO2 poisoning ability.  相似文献   

2.
Bin Wen 《Fuel》2002,81(14):1841-1846
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature.  相似文献   

3.
Fe-ZSM-5 catalysts were prepared by subliming FeCl3 into H-ZSM-5. The method used allowed Fe-ZSM-5 catalyst preparation by FeCl3 exchange at a desired sublimation temperature and was found to be more precise. The sublimation of FeCl3 into H-ZSM-5 was carried out at 320 and 700 °C. Fe-ZSM-5 prepared by sublimation of FeCl3 at 320 °C followed by rapid heating to 700 °C and the catalyst prepared by subliming FeCl3 at 700 °C were found to be more active for NO reduction with NH3 in the presence of simulated exhaust gases containing water vapor than catalysts prepared by subliming FeCl3 at 320 °C. To determine the active sites, the catalysts were characterized by H2-TPR, in situ DRIFTS of NO adsorption, NH3-TPD, XRD and chemical analysis methods. The observed NO conversion differences in selective catalytic reduction using NH3 could be correlated to the iron cation species present at different locations determined from diffuse reflectance infrared spectroscopy. Enhanced NO reduction activity was obtained when positions in Fe-ZSM-5, corresponding to Fe2+(NO) band at 1877 cm-1 in DRIFTS, were preferentially occupied.  相似文献   

4.
A series of manganese–cerium mixed oxides were prepared by a glycothermal method, and the NO decomposition activities of the Ba-loaded Ce–Mn oxides were examined. Among the catalysts examined, the highest NO conversion was obtained on the BaO/Ce–Mn oxide catalyst with a Mn/(Ce+Mn) ratio of 0.25. The X-ray diffraction and Raman analyses indicated the formation of Ce–Mn oxide solid solutions with a cubic fluorite structure. The electron spin resonance analysis indicated the presence of paramagnetic Mn2+ species in the composite catalysts. Incorporation of Mn2+ in the fluorite structure of CeO2 causes an increase in the concentration of oxygen vacancies, which play an important role in the NO decomposition activity of the catalysts. The catalysts were also characterized by X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Based on the results obtained, the relationship between the physical properties of the catalysts and their NO decomposition activities was discussed.  相似文献   

5.
A series of transition metal oxides promoted titania catalysts (MO x /TiO2; M = Cr, Mn, Fe, Ni, Cu) were prepared by wet impregnation method using dilute solutions of metal nitrate precursors. The catalytic activity of these materials was evaluated for the selective catalytic reduction (SCR) of NO with CO as reductant in the presence of excess oxygen (2 vol.%). Among various promoted oxides, the MnO x /TiO2 system showed very promising catalytic activity for NO + CO reaction, giving higher than 90% NO conversion over a wide temperature window and at high space velocity (GHSV) of 50,000 h−1. It is remarkable to note that the catalytic activity increased with oxygen, up to 4 vol.%, under these conditions leading primarily to nitrogen. Our TPR studies revealed the presence of mixed oxidation states of manganese on the catalyst surface. Characterization results indicated that the surface manganese oxide phase and the redox properties of the catalyst play an important role in final catalytic activity.  相似文献   

6.
Acetylene as a reducing agent for the selective catalytic reduction (C2H2-SCR) of NO in the presence of excess oxygen on various Ce-exchanged zeolites was investigated for the first time. Under the conditions of 1600 ppm NO, 800 ppm C2H2, and 9.95 % O2 in He, the Ce-H-ZSM-5 (Si/Al=25) catalyst shows about 83% NO conversion to N2 at the temperatures ranged from 300 to 350 °C. It is followed by the other zeolites in the activity order of Ce-H-Y (Si/Al=2.5), Ce-H-_ (Si/A1=20∼30), and Ce-H-SAPO (Si/Al=34), Ce-H-5A (Si/Al=12). Almost no NO conversion was obtained over Ce-Na-ZSM-5 (Si/Al=25) and Na-ZSM-5 (Si/Al=25) catalyst samples. The Conversion of NO to N2 increased with O2 concentration in the range of 0.1 ∼ 9.95% over the CeH-ZSM-5 (Si/Al=25) catalyst. It is suggested that O2 plays an important role in the C2H2-SCR of NO reaction, by oxidizing NO to NO2 on acid sites in assistant with cerium species of the catalyst. A large amount of CO, which seems to be in proportion with the NO conversion to N2, was produced. Long-term experiments up to 56 h combined with a excursion of the reaction temperature up to 650 °C over the Ce-H-ZSM-5 (Si/A1=25) confirmed the catalyst’s durable performance under the reaction conditions. It is found that the de-NOx activity of Ce-H-ZSM-5 catalyst can be enhanced by the presence of 50 ppm of sulfur dioxide in the dry-feed reaction conditions.  相似文献   

7.
Titanium nanotubes (TNTs)-confined ceria were for the first time prepared in this paper and used for selective catalytic reduction (SCR) of NO with ammonia. In comparison with the catalysts supported by TiO2 nanoparticles, the confined ceria showed a superiority in SCR of NO due to the improved redox potential and special adsorption of NH3, where its NO conversion could exceed 95% at reaction temperature of 270–500 °C, which was much higher than that of TiO2 nanoparticle supported catalysts.  相似文献   

8.
Microwave discharge-assisted reduction of NO by CH4 in the presence of excess O2 over Co/HZSM-5 and Ni/HZSM-5 catalysts was studied. By comparing the activities of the catalysts in the microwave discharge mode with that in the conventional reaction mode, it is demonstrated that microwave discharge enhanced greatly the conversion of NO to N2, and expanded the reaction temperature range of the catalysts. For the Co/HZSM-5 catalyst, the conversion of NO to N2 increased by 30%, and the optimum temperature decreased by 200°C. With the Ni/HZSM-5 catalyst, the highest activity was close to 100%, and the optimum temperature decreased by 325°C. The conversion of CH4 also increased in the microwave discharge mode over both of the catalysts.  相似文献   

9.
The reduction of NO by CH4 in the presence of excess O2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360 °C instead of a temperature of 420 °C in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.  相似文献   

10.
Nickel doped manganese oxide supported on titania materials were investigated for the low-temperature NH3-SCR. For this purpose, a series of Ni modified Mn/TiO2 catalysts were prepared and evaluated for the low-temperature SCR of NO with ammonia in the presence of excess oxygen. The catalytic performance of these materials was compared with respect to the nickel weight percentage in order to examine the correlation between physicochemical characteristics and reactivity of optimized materials. It was found that the 5% Mn–2% Ni/TiO2 catalyst showed the highest activity and yielded 100% NO conversion at 200 °C. XRD results reveal highly dispersed manganese–nickel species on TiO2 support for the Mn–Ni/TiO2 catalysts. Our TPR data results suggested an increase in reducibility of manganese species in Mn–Ni/TiO2 catalysts. The absence of the high-temperature (736 K) peak indicates that the dominant phase is MnO2. This increase of reducibility and dominant MnO2 phase seems to be the reason for the enhanced activity and time on stream patterns of nickel-promoted titania-supported manganese catalysts. BET results illustrate that the high NO conversion is strongly dependant on the specific surface area and pore volume of this catalyst. All the physicochemical techniques we used suggested that the composition of manganese and nickel oxides on the support surface is playing an important role for the enhancement of NO conversion and the prominent time on stream stability.  相似文献   

11.
《Ceramics International》2020,46(4):4394-4401
MnOx-CeO2 (denoted as Mn–Ce) nanorod and MnOx-CeO2 nanooctahedra catalysts were synthesized by the hydrothermal method and were used for selective catalytic reduction of NO with NH3. The catalytic performance tests showed that the NO removal efficiency of CeO2 catalysts was obviously improved after loading MnOx. The structure and properties of catalysts had been characterized by SEM、TEM、XRD、BET、XPS、H2-TPR、NH3-TPD and in situ DRIFTS. It was found that Mn–Ce catalyst were of uniform core-shell structure, higher concentrations of Mn4+ and Ce3+, better reducibility, the increase of weak acid sites. The results of in situ DRIFTS indicated that the NH3-SCR reaction should obey the E–R mechanism. Moreover, the promotion effect and mechanism of MnOx doped CeO2 was demonstrated, which improved the catalytic activity of Mn–Ce catalysts.  相似文献   

12.
Zeolites have occupied a distinguished position due to their unique properties as solid acids and catalytic results achieved in several industrial reactions. This work studied the influence of supported WO3 on USY zeolite structure, acidity and activity towards an esterification reaction. High dispersion of WO3 species on USY was achieved, but at higher loading (?11.4%), microcrystalites of WO3 were detected below the theoretical monolayer coverage (∼32%). Tungsten species were deposited preferentially inside the zeolite structure and interacted with the Brønsted sites of USY as well as on silanol surface groups with the formation of small aggregates. In addition, dealumination took place, especially in the samples with high WO3 loading. USY had the most and the strongest acidic sites (Brønsted type), but the incorporation of WO3 decreased the amount and the strength of the new sites. However, all WO3/USY catalysts were more active than USY in the esterification of oleic acid with ethanol (conversion above 74%, 2 h at 200 °C). The calculation of the TOF for a 1 h reaction demonstrated that 11.4% WO3/USY was the most active catalyst. Furthermore, it had the lowest rate of deactivation of acid sites after the reaction (∼13% after four cycles). The better performance of the 11.4% WO3/USY sample was also attributed to a better distribution of strength of the acidic sites and a more hydrophobic character of the synthesized material.  相似文献   

13.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a CuO/La2O3 composite catalyst at temperatures between 150 and 400 °C. A CuO/La2O3 composite catalyst was prepared by co-precipitation of copper nitrate and lanthanum nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (C0 = 1000 ppm), the space velocity (GHSV = 92,000 l/h), the relative humidity (RH = 12%) and the concentration of oxygen (O2 = 4%) affect the operational stability and the capacity for removing NH3. The catalysts that were characterized using FTIR, XRD, UV-Vis, BET and PSA, have shown that the catalytic behavior is related to the copper (II) oxide, while lanthanum (III) oxide may serve only to provide active sites for the reaction during a catalyzed oxidation run. The experimental results show that the extent of conversion of ammonia by SCO in the presence of the CuO/La2O3 composite catalyst was a function of the molar ratio. The ammonia was removed by oxidation in the absence of CuO/La2O3 composite catalyst, and around 93.0% NH3 reduction was achieved during catalytic oxidation over the CuO/La2O3 (8:2, molar/molar) catalyst at 400 °C with an oxygen content of 4.0%. Moreover, the effect of the reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of under 92,000 h− 1.  相似文献   

14.
We have reported previously the excellent performance of Fe-exchanged ZSM-5 for selective catalytic oxidation (SCO) of ammonia to nitrogen at high temperatures (e.g., 400-500 °C). The present work indicates that the reaction temperature can be decreased to 250-350 °C when a small amount of noble metal (Pt, Rh or Pd) is added (by both doping and ion exchange) to the Fe-ZSM-5. The SCO activity follows the order: Pt/Fe-ZSM-5 > Rh/Fe-ZSM-5 > Pd/Fe-ZSM-5. The noble metal promoted Fe-ZSM-5 catalysts also show higher activity for NH3 oxidation than Ce-exchanged Fe-ZSM-5 at low temperatures. On the Pt promoted Fe-ZSM-5, near 100% of NH3 conversion is obtained at 250 °C at a high space velocity (GHSV = 2.3 × 105 h-1) and nitrogen is the main product. The presence of H2O and SO2 decreases the SCO performance only slightly. This catalyst is a good candidate for solving the ammonia slip problem that plagues the selective catalytic reduction (SCR) of NO with ammonia in power plants.  相似文献   

15.
Sulfated TiO2 nanotubes and a series of iron oxide loaded sulfated TiO2 nanotubes catalysts with different iron oxide loadings (1 wt%, 3 wt%, 5 wt% and 7 wt%) were prepared and calcined at 400 °C. The physico-chemical properties of the catalysts were studied by using XRD, N2-physisorption, Raman spectroscopy, SEM-EDX, TEM, XPS, and pyridine adsorption using FTIR and H2-TPR techniques. It was observed that iron oxide was highly dispersed on the sulfated TiO2 nanotube support due to its strong interaction. The activity of these catalysts in the catalytic removal of NO with propane was also studied in the temperature range of 300–500 °C. Highest activity (90% NO conversion) was observed with 5 wt% iron oxide supported on sulfated TiO2 catalyst at 450 °C. Selective catalytic reduction of NO activity of the catalysts was correlated with iron oxide loading, reducibility, and the Brönsted and Lewis acid sites of the catalysts. The catalyst also showed good stability under studied reaction conditions that no deactivation was observed during the 50 h of reaction.  相似文献   

16.
The effect of adding 330–4930 ppm hydrogen to a reaction mixture of NO and CO (2000 ppm each) over platinum and rhodium catalysts has been investigated at temperatures around 200–250°C. Hydrogen causes large increases in the conversion of NO and, surprisingly, also of CO. Oxygen atoms from the additional NO converted are eventually combined with CO to give CO2 rather than react with hydrogen to form water. This reaction is described by CO + NO +3/2H2 CO2 + NH3 and accounts for 50–100% of the CO2 formed with Pt/Al2O3 and 20–50% with Rh/Al2O3. With the latter catalyst a substantial amount of NO converted produces nitrous oxide. Comparison with a known study of unsupported noble metals suggests that isocyanic acid (HNCO) might be an important intermediate in a reaction system with NO, CO and H2 present.  相似文献   

17.
Supporting CuO on a Al2O3-coated cordierite honeycomb yields a good catalyst (CuO/HC–Al) for selective catalytic reduction (SCR) of NO with NH3 at 350–500 °C. SO2 has complex effects on the catalysts activity. It significantly promotes the SCR activity through conversion of CuO to CuSO4, however, when a certain amount of CuO is converted, it slightly decreases the SCR activity through competitive adsorption with NH3. This competitive adsorption reduces the amount of NH3 adsorbed on the catalyst surface, especially on the sites highly active to the SCR. It also prevents transformation of CuO to CuSO4 and as a result, the catalysts subjected to pre-sulfation and in situ sulfation show different SCR behaviors.  相似文献   

18.
Mn/Al catalysts for hydrogenation of methyl benzoate to benzaldehyde were prepared by different methods. The catalyst prepared from hydrotalcite-like precursor, the mesoporous MSU-γ supported Mn catalyst and the Mn-incorporated MSU-γ catalyst are more active than conventional Mn/γ-Al2O3 catalyst. The reaction temperature for the same yield level can be reduced by 20–60 °C. High specific surface area, high dispersion of manganese oxide species and strong interaction of manganese oxide species with γ-Al2O3 are of benefit to the reaction.  相似文献   

19.
A low activation energy pathway for the catalytic reduction of nitrogen oxides to N2, with reductants other than ammonia, consists of two sets of reaction steps. In the first set, part of the NO x is reduced to NH3; in the second set ammonium nitrite, NH4NO2 is formed from this NH3 and NO + NO2. The NH4NO2 thus formed decomposes at ~100 °C to N2 + H2O, even on an inert support, whereas ammonium nitrate, NH4NO3, which is also formed from NH3 and NO2 + O2, (or HNO3), decomposes only at 312 °C yielding mainly N2O. Upon applying Redhead's equations for a first order desorption to the decomposition of ammonium nitrite, an activation energiy of 22.4 is calculated which is consistent with literature data. For the reaction path via ammonium nitrite a consumption ratio of 1/1 for NO and NO2 is predicted and confirmed experimentally by injecting NO into a mixture of NH3 + NO2 flowing over a BaNa/Y catalyst. This leads to a yield increase of one N2 molecule per added molecule of NO. Little N2 is produced from NH3 + NO in the absence of NO2.  相似文献   

20.
Oxidative coupling of methane (OCM) was investigated in the temperature range 370-775 °C over Mn/Na2WO4/SiO2 catalysts with different loadings of manganese in integral-mode conditions. Na2WO4/SiO2 shows no activity at low temperature (370 °C), whereas Mn-doped catalyst exhibits 14% C2+ yield under similar reaction conditions, indicating that manganese plays a critical role in low-temperature methane coupling reaction. Partial pressure of oxygen in the feed also influences the low-temperature OCM activity of the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号