首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of Dishevelled signalling pathways during Xenopus development   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies have demonstrated that the Wnt, Frizzled and Notch proteins are involved in a variety of developmental processes in fly, worm, frog and mouse embryos. The Dishevelled (Dsh) protein is required for Drosophila cells to respond to Wingless, Notch and Frizzled signals, but the molecular mechanisms of its action are not well understood. Using the ability of a mutant form of the Xenopus homologue of Dsh (Xdsh) to block Wnt and Dsh signalling in a model system, this work attempts to clarify the role of the endogenous Xdsh during the early stages of vertebrate development. RESULTS: A mutant Xdsh (Xdd1) with an internal deletion of the conserved PDZ/DHR domain was constructed. Overexpression of Xdd1 mRNA in ventral blastomeres of Xenopus embryos strongly inhibited induction of secondary axes by the wild-type Xdsh and Xwnt8 mRNAs, but did not affect the axis-inducing ability of beta-catenin mRNA. These observations suggest that Xdd1 acts as a dominant-negative mutant. Dorsal expression of Xdd1 caused severe posterior truncations in the injected embryos, whereas wild-type Xdsh suppressed this phenotype. Xdd1 blocked convergent extension movements in ectodermal explants stimulated with mesoderm-inducing factors and in dorsal marginal zone explants, but did not affect mesoderm induction and differentiation. CONCLUSIONS: A vertebrate homologue of Dsh is a necessary component of Wnt signal transduction and functions upstream of beta-catenin. These findings also establish a requirement for the PDZ domain in signal transduction by Xdsh, and suggest that endogenous Xdsh controls morphogenetic movements in the embryo.  相似文献   

2.
3.
The marginal zone is a ring of tissue that gives rise to a characteristic dorsoventral pattern of mesoderm in amphibian embryos. Bmp-4 is thought to play an important role in specifying ventral mesodermal fate. Here we show (1) that different doses of Bmp-4 are sufficient to pattern four distinct mesodermal cell types and to pattern gene expression in the early gastrula marginal zone into three domains, (2) that there is a graded requirement for a Bmp signal in mesodermal patterning, and (3) that Bmp-4 has long-range activity which can become graded in the marginal zone by the antagonizing action of noggin. The results argue that Bmp-4 acts as a morphogen in dorsoventral patterning of mesoderm.  相似文献   

4.
BACKGROUND: Bone morphogenetic protein (BMP) plays an important role in mesoderm patterning in Xenopus. The ectopic expression of BMP-4 protein hyperventralizes embryos, whereas embryos expressing a BMP-2/4 dominant-negative receptor (DNR) are hyperdorsalized. Mesoderm is initially induced in the marginal zone by cells in the underlying vegetal pole. While much is known about BMP's expression and role in patterning the marginal zone, little is known about its early role in regulating vegetal mesoderm induction centre formation. RESULTS: The role of BMP in regulating formation of vegetal mesoderm inducing centres during early Xenopus development was examined. Ectopic BMP-4 expression in vegetal pole cells inhibited dorsal mesoderm induction but increased ventral mesoderm induction when recombined with animal cap ectoderm in Nieuwkoop explants. 32-cell embryos injected with BMP-4 RNA in the most vegetal blastomere tier were not hyperdorsalized by LiCl treatment. The ectopic expression of Smad or Mix.1 proteins in the vegetal pole also inhibited dorsal mesoderm induction in explants and embryos. Expression of the BMP 2/4 DNR in the vegetal pole increased dorsal mesoderm induction and inhibited ventral mesoderm induction in explants and embryos. CONCLUSIONS: These results support a role for BMP signalling in regulating ventral vegetal and dorsal vegetal mesoderm induction centre formation during early Xenopus development.  相似文献   

5.
The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.  相似文献   

6.
7.
The Drosophila EGF receptor (DER) is activated by secreted Spitz to induce different cell fates in the ventral ectoderm. Processing of the precursor transmembrane Spitz to generate the secreted form was shown to be the limiting event, but the cells in which processing takes place and the mechanism that may generate a gradient of secreted Spitz in the ectoderm were not known. The ectodermal defects in single minded (sim) mutant embryos, in which the midline fails to develop, suggested that the midline cells contribute to patterning of the ventral ectoderm. This work shows that the midline provides the site for Spitz expression and processing. The Rhomboid and Star proteins are also expressed and required in the midline. The ectodermal defects of spitz, rho or Star mutant embryos could be rescued by inducing the expression of the respective normal genes only in the midline cells. Rho and Star thus function non-autonomously, and may be required for the production or processing of the Spitz precursor. Secreted Spitz is the only sim-dependent contribution of the midline to patterning the ectoderm, since the ventral defects observed in sim mutant embryos can be overcome by expression of secreted Spitz in the ectoderm. While ectopic expression of secreted Spitz in the ectoderm or mesoderm gave rise to ventralization of the embryo, increased expression of secreted Spitz in the midline did not lead to alterations in ectoderm patterning. A mechanism for adjustment to variable levels of secreted Spitz emanating from the midline may be provided by Argos, which forms an inhibitory feedback loop for DER activation. The production of secreted Spitz in the midline, may provide a stable source for graded DER activation in the ventral ectoderm.  相似文献   

8.
The marginal zone in Xenopus laevis is proposed to be patterned with dorsal mesoderm situated near the upper blastoporal lip and ventral mesoderm near the lower blastoporal lip. We determined the origins of the ventralmost mesoderm, primitive blood, and show it arises from all vegetal blastomeres at the 32-cell stage, including blastomere C1, a progenitor of Spemann's organizer. This demonstrates that cells located at the upper blastoporal lip become ventral mesoderm, not solely dorsal mesoderm as previously believed. Reassessment of extant fate maps shows dorsal mesoderm and dorsal endoderm descend from the animal region of the marginal zone, whereas ventral mesoderm descends from the vegetal region of the marginal zone, and ventral endoderm descends from cells located vegetal of the bottle cells. Thus, the orientation of the dorsal-ventral axis of the mesoderm and endoderm is rotated 90( degrees) from its current portrayal in fate maps. This reassessment leads us to propose revisions in the nomenclature of the marginal zone and the orientation of the axes in pre-gastrula Xenopus embryos.  相似文献   

9.
10.
A frizzled homolog functions in a vertebrate Wnt signaling pathway   总被引:1,自引:0,他引:1  
BACKGROUND: Wnts are secreted proteins implicated in cell-cell interactions during embryogenesis and tumorigenesis, but receptors involved in transducing Wnt signals have not yet been definitively identified. Members of a large family of putative transmembrane receptors homologous to the frizzled protein in Drosophila have been identified recently in both vertebrates and invertebrates, raising the question of whether they are involved in transducing signals for any known signaling factors. RESULTS: To test the potential involvement of frizzled homologs in Wnt signaling, we examined the effects of overexpressing rat frizzled-1 (Rfz-1) on the subcellular distribution of Wnts and of dishevelled, a cytoplasmic component of the Wnt signalling pathway. We demonstrate that ectopic expression of Rfz-1 recruits the dishevelled proten-as well as Xenopus Wnt-8 (Xwnt-8), but not the functionally distinct Xwnt-5A-to the plasma membrane. Moreover, Rfz-1 is sufficient to induce the expression of two Xwnt-8-responsive genes, siamois and Xnr-3, in Xenopus explants in a manner which is antagonized by glycogen synthase kinase-3, which also antagonizes Wnt signaling. When Rfz-1 and Xwnt-8 are expressed together in this assay, we observe greater induction of these genes, indicating that Rfz-1 can synergize with a Wnt. CONCLUSIONS: The results demonstrate that a vertebrate frizzled homolog is involved in Wnt signaling in a manner which discriminates between functionally distinct Wnts, which involves translocation of the dishevelled protein to the plasma membrane, and which works in a synergistic manner with Wnts to induce gene expression. These data support the likely function of frizzled homologs as Wnt receptors, or as components of a receptor complex.  相似文献   

11.
This paper describes the identification of a new family of mammalian genes that encode secreted proteins containing homology to the cysteine-rich ligand-binding domain found in the frizzled family of transmembrane receptors. The secreted frizzled-related proteins (sFRPs) are approximately 30 kDa in size, and each contains a putative signal sequence, a frizzled-like cysteine-rich domain, and a conserved hydrophilic carboxy-terminal domain. The sFRPs are not the products of differential splicing of the known frizzled genes. Glycosylphosphatidylinositol-anchored derivatives of sFRP-2 and sFRP-3 produced in transfected human embryonic kidney cells confer cell-surface binding by the Drosophila Wingless protein. These observations suggest that sFRPs may function in vivo to modulate Wnt signaling, or, alternatively, as novel ligands for as yet unidentified receptors.  相似文献   

12.
13.
14.
To determine the sequence of cell behaviors that is involved in the morphogenesis of the zebrafish organizer region, we have examined the dorsal marginal zone of vitally stained zebrafish embryos using time-lapse confocal microscopy. During the late-blastula stage, the zebrafish dorsal marginal zone segregates into several cellular domains, including a group of noninvoluting, highly endocytic marginal (NEM) cells. The NEM cell cluster, which lies in a superficial location of the dorsal marginal zone, is composed of both enveloping layer cells and one or two layers of underlying deep cells. The longitudinal position of this cellular domain accurately predicts the site of embryonic shield formation and occupies a homologous location to the organizer epithelium in Xenopus laevis. At the onset of gastrulation, deep cells underneath the superficial NEM cell domain undergo involution to form the nascent hypoblast of the embryonic shield. Deep cells within the NEM cell cluster, however, do not involute during early shield formation, but instead move in front of the blastoderm margin to form a loose mass of cells called forerunner cells. Forerunner cells coalesce into a wedge-shaped mass during late gastrulation and eventually become overlapped by the converging lateral lips of the germ ring. During early zebrafish tail elongation, most forerunner cells are incorporated into the epithelial lining of Kupffer's vesicle, a transient teleostean organ rudiment long thought to be an evolutionary vestige of the neurenteric canal. Owing to the location of NEM cells at the dorsal margin of blastula-stage embryos, as well as their early segregation from other deep cells, we hypothesized that NEM cells are specified by an early-acting dorsalizing signal. To test this possibility, we briefly treated early-blastula stage embryos with LiCl, an agent known to produce hyperdorsalized zebrafish embryos with varying degrees of expanded organizer tissue. In Li(+)-treated embryos, NEM cells appear either within expanded spatial domains or in ectopic locations, primarily within the marginal zone of the blastoderm. These results suggest that NEM cells represent a specific cell type that is specified by an early dorsal patterning pathway.  相似文献   

15.
16.
Recent advances in analyzing wnt signaling have provided evidence that frizzled proteins can function as wnt receptors. We have identified Xfz3, a Xenopus frizzled family member. The amino acid sequence is 89% identical to the product of the murine gene Mfz3, and is predicted to be a serpentine receptor with seven transmembrane domains. Xfz3 is a maternal mRNA with low levels of expression until the end of gastrulation. The expression level increases significantly from neurulation onward. Whole-mount in situ hybridization analysis shows that expression of Xfz3 is highly restricted to the central nervous system. High levels of expression are detected in the anterior neural folds. Low levels of expression are also detected in the optic and otic vesicles, as well as in the pronephros anlage. In addition, Xfz3 mRNA is concentrated in a large band in the midbrain. Overexpression of Xfz3 blocks neural tube closure, resulting in embryos with either bent and strongly reduced anteroposterior axis in a dose-dependent manner. However, it does not affect gastrulation, the expression and localization of organizer-specific genes such as goosecoid, chordin and noggin. Therefore, Xfz3 is not involved in early mesodermal patterning. Injection of RNA encoding GFP-tagged Xfz3 shows that overexpressed proteins can be detected on the cell surface until at least late neurula stage, suggesting that they can exert an effect after gastrulation. Our expression data and functional analyses suggest that the Xfz3 gene product has an antagonizing activity in the morphogenesis during Xenopus development.  相似文献   

17.
Vg1 is a maternal mRNA localized to the vegetal hemisphere of Xenopus embryos during blastula stages, a region responsible for the induction of mesoderm in the adjacent marginal zone. Its homology to the transforming growth factor-beta family, which includes several proteins with mesoderm-inducing activity, suggests a role for Vg1 as an endogenous mesoderm-inducing factor. However, expression of Vg1 protein in the animal hemisphere, following injection of synthetic mRNA, has no effect on development, and isolated animal caps are not mesodermalized. It is shown that Vg1 protein fails to form dimers and is not processed to release the putative bioactive domain. Furthermore it is shown that the N-terminal signal peptide of Vg1 is not cleaved following translocation into the ER, which may explain the failure of this protein to dimerize. To explore the role of Vg1 in amphibian development, a fusion protein has been made of the preproregion of Xenopus bone morphogenetic protein-4 and the putative bioactive C-terminal domain of Vg1. This fusion protein forms dimers and the C-terminal domain of Vg1 is secreted. Injection of this construct into Xenopus embryos induces the formation of a second dorsal axis and isolated animal caps are mesodermalized. The results are consistent with a role for Vg1 in mesoderm induction during Xenopus development.  相似文献   

18.
Specification of the dorsal-ventral compartment boundary in the developing Drosophila wing disc requires activation of NOTCH from its dorsal ligand SERRATE and its ventral ligand DELTA. Both NOTCH ligands are required in this process and one cannot be substituted for the other. In the wing disc, expression of a dominant-negative, truncated form of SERRATE called BD(G), is capable of inhibiting NOTCH activation in the ventral but not the dorsal compartments. We demonstrate that BD(G) can act as a general antagonist of both SERRATE and DELTA mediated NOTCH interactions, however, BD(G) retains the SERRATE protein domain targeted by FRINGE, hence its antagonistic effects are restricted in the dorsal wing disc. Our findings suggest a model in which ligand binding to NOTCH is a necessary but insufficient step toward NOTCH activation.  相似文献   

19.
20.
Mesodermal patterning in the amphibian embryo has been extensively studied in its dorsal aspects, whereas little is known regarding its ventrolateral regionalization due to a lack of specific molecular markers for derivatives of this type of mesoderm. Since smooth muscles (SM) are thought to arise from lateral plate mesoderm, we have analyzed the expression of an alpha-actin isoform specific for SM with regard to mesoderm patterning. Using an antibody directed against alpha-SM actin that recognized specifically this actin isoform in Xenopus, we have found that the expression of alpha-SM actin is restricted to visceral and vascular SM with a transient expression in the heart. The overall expression of the alpha-SM actin appears restricted to the ventral aspects of the differentiating embryo. alpha-SM actin expression appears to be activated following mesoderm induction in animal cap derivatives. Moreover, at the gastrula stage, SM precursor cells are regionalized since they will only differentiate from ventrolateral marginal zone explants. Using the animal cap assay, we have found that alpha-SM actin expression is specifically induced in treated animal cap with bFGF or a low concentration of XTC-MIF, which induce ventral structures, but not with a high concentration of XTC-MIF, which induces dorsal structures. Altogether, these results establish that alpha-SM actin is a reliable marker for ventrolateral mesoderm. We discuss the importance of this novel marker in studying mesoderm regionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号