首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports on fabrication and design considerations of an integrated folded shorted-patch chip-size antenna for applications in short-range wireless microsystems and operating inside the 5–6 GHz ISM band. Antenna fabrication is based on wafer-level chip-scale packaging (WLCSP) techniques and consists of two adhesively bonded glass wafers with patterned metallization and through-wafer electrical interconnects. Via formation in glass substrates is identified as the key fabrication step. Various options for via formation are compared and from these, a 193 nm excimer laser ablation is selected for fabrication of the antenna demonstrator. The fabricated antenna has dimensions of 4 mm × 4 mm × 1 mm, measured operating frequency of 5.05 GHz with a bandwidth of ∼200 MHz at the return loss of −10 dB and a simulated radiation efficiency of 60% were achieved.  相似文献   

2.
This paper presents a simple, low-cost, and reliable process for the fabrication of a microfluidic Fabry–PÉrot cavity in a Pyrex glass substrate. The microfluidic channels were etched in HF solution on a glass substrate using a Cr/Au/photoresist etching mask resulting in a channel bottom roughness of 1.309 nm. An effective thermocompressive gold–gold bonding technique was used to bond the photolithographically etched glass substrates inside a 350$^circ C $oven in a$ 10^ - 3~ torr $vacuum. Pressure was applied to the glass pieces by using two aluminum blocks with intermediate copper sheets. This method takes advantage of using Cr/Au layers both as a wet etching mask and as intermediate bonding layers, requiring only one lithography step for the entire process. The fabrication method is also compatible with the incorporation of dielectric mirror coatings in the channels to form a high-finesse Fabry–PÉrot cavity. A parallelism of 0.095 degrees was measured, and a finesse as high as 30 was obtained using an LED. The microfluidic cavity developed here can be used in electrophoresis and intracavity spectroscopy experiments.hfillhbox[1375]  相似文献   

3.
A sensor developed for measurement of water concentration inside glass/polymer encapsulation structures with a particular application area in accelerated aging of photovoltaic module encapsulants is described. An approximately 5 μm thick porous TiO2 film applied to a glass substrate with a conductive coating acts as the moisture-sensitive component. The response is calibrated with weather chamber experiments for sensors open to the environment and with diffusion experiments for sensors laminated under an encapsulant. For the interpretation of diffusion experiment results, a transport model describing the diffusion of water across the polymer/TiO2 interface is developed. The logarithm of AC resistance shows a linear dependence on water concentration in both open and encapsulated calibration. The first measurable response from an encapsulated 3.5 mm × 8 mm size sensor is obtained when approximately 10 μg of water has entered the film. Implications of the calibration results for sensor usage in accelerated aging tests are discussed.  相似文献   

4.

The paper reports on the fabrication and characterisation of free-standing multimode optical epoxy polymer waveguides consisting of a core made of EpoCore and EpoClad polymer cladding and cover protection layers. The 50 × 50 μm2 rectangular waveguides are intended for short-reach optical interconnection and optimised for an operating wavelength of 850 nm. The waveguides of the proposed shapes were fabricated by a standard photolithography process on a silicon substrate provided with a Poly(vinyl alcohol) thin layer. The free-standing structure was then achieved by peeling the deposited EpoClad/EpoCore/EpoClad structures of that substrate. The optical scattering losses of the created planar waveguides, measured by the fibre probe technique at 632.8 and 964 nm, were 0.30 dB cm−1 at 632.8 nm and 0.17 dB cm−1 at 964 nm. Propagation optical loss measurements for rectangular waveguides were performed by the cut-back method and the best samples had optical losses below 0.55 dB cm−1 at 850 and 1310 nm.

  相似文献   

5.
The artificially constructed materials based split ring resonators (SRRs) may have exotic electromagnetic properties and have received growing interest in recent years. Moreover, the resonance frequency shift of this material is extraordinarily sensitive to the changes in the capacitance of SRR, which makes SRR suit for microwave thin-film sensing applications. Based on such principle, the tip-shaped SRR metamaterial is presented as thin-film sensor in this paper to reduce device size and resonance frequency as well as to improve the Q-factor. The structure is placed inside an X-band waveguide with dimensions of 22.86 mm × 10.16 mm × 12.8 mm to investigate resonance frequency shift in different cases by numerical method. In contrast to the traditional structures, the tip-shaped design exhibits a miniaturization and sharper dip on resonance in their transmission spectra. Furthermore, the proposed sensor can deliver the sensitivity level of 16.2 MHz/μm and less than a 2 μm nonlinearity error when the uniform benezocyclobutene films from 100 nm to 50 μm thick are coated onto the fixed structure. These results indicate that the proposed thin-film sensor has high sensitivity and low nonlinearity error, and make it great promising application for wireless sensors in future.  相似文献   

6.
A study on thermocapillary actuation of liquid droplet in a planar microchannel has been carried out by both theoretical modeling and experimental characterization. The driving temperature gradients are provided by four heaters at the channel boundaries. In the modeling, the temperature distributions corresponding to transient actuation are calculated, and are coupled to the droplet through the surface tensions which drive the droplet to move inside the channel. The droplet trajectories and final positions are predicted, and are compared with the experimental observations, in which a silicon oil droplet was actuated inside a 10 mm  ×  10 mm planar channel with four heater fabricated on the substrate plate. The results show that the droplet can be positioned anywhere in the channel, determined by a heating code related to the heating strengths. Qualitative agreement between the modeling results and experimental data, in terms of temperature distributions, droplet trajectories and positions, has been obtained.  相似文献   

7.
In this paper, we developed a hermetic wafer level packaging for MEMS devices. Au–Sn eutectic bonding technology in a relatively low temperature is used to achieve hermetic sealing, and the vertical through-hole via filled with electroplated copper for the electrical connection is also used. The MEMS package has the size of 1 mm × 1 mm × 700 μm, and a square loop Au–Sn metallization of 70 μm in width for hermetic sealing. The robustness of the package is confirmed by several tests such as shear strength test, reliability tests, and hermeticity test. The reliability issues of Au–Sn bonding technology, and copper through-wafer interconnection are discussed, and design considerations to improve the reliability are also presented. By applying O2 plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface. The mechanical effects of copper through-vias are also investigated numerically and experimentally. Several factors which could induce via hole cracking failure are investigated such as thermal expansion mismatch, via etch profile, copper diffusion phenomenon, and cleaning process. Alternative electroplating process is suggested for preventing Cu diffusion and increasing the adhesion performance of the electroplating process.  相似文献   

8.
Bonding is a bottleneck for mass-production of polymer microfluidic devices. A novel ultrasonic bonding method for rapid and deformation-free bonding of polymethyl methacrylate (PMMA) microfluidic chips is presented in this paper. Convex structures, usually named energy director in ultrasonic welding, were designed and fabricated around micro-channels and reservoirs on the substrates. Under low amplitude ultrasonic vibration, localized heating was generated only on the interface between energy director and cover plate, with peak temperature lower than T g (glass transition temperature) of PMMA. With the increasing of temperature, solution of PMMA in isopropanol (IPA) increases and bonding was realized between the contacting surfaces of energy director and cover plate while no solution occurs on the surfaces of other part as their lower temperature. PMMA microfluidic chips with micro-channels of 80 μm × 80 μm were successfully bonded with high strength and low dimension loss using this method.  相似文献   

9.
This paper presents the design and fabrication of a micro Pirani gauge using VO x as the sensitive material for monitoring the pressure inside a hermetical package for micro bolometer focal plane arrays (FPAs). The designed Pirani gauge working in heat dissipating mode was intentionally fabricated using standard MEMS processing which is highly compatible with the FPAs fabrication. The functional layer of the micro Pirani gauge is a VO x thin film designed as a 100 × 200 μm pixel, suspended 2 μm above the substrate. By modeling of rarefied gas heat conduction using the Extended Fourier’s law, finite element analysis is used to investigate the sensitivity of the pressure gauge. Also the thermal interactions between the micro Pirani gauge and bolometer FPAs are verified. From the fabricated prototype, the measured device TCR is about −0.8% K−1 and the sensitivity about 1.84 × 10−3 W K−1 mbar−1.  相似文献   

10.
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and manipulation, but microfabricating the required sub-micrometer structures is an elaborate process. This article presents a simple method to integrate filters in polydimethylsiloxane (PDMS) devices to sample microorganisms in aqueous environments. An off-the-shelf membrane filter with 0.22-μm pores was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of biomass, from 15 × 107 to 3 × 108 cells/ml of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. The major advantages of this method are low cost, simple design, straightforward fabrication, and robust performance, enabling wide-utility of chip-based devices for field-deployable operations in environmental microbiology.  相似文献   

11.
We studied an imaging-based technique for the rapid quantification of bio-particles in a dielectrophoretic (DEP) microfluidic chip. Label-free particles could be successively sorted and trapped in a continuous flow manner under the applied alternating current (AC) conditions. Both 2 and 3 μm polystyrene beads at a concentration of 1.0 × 107 particles ml−1 could be rapidly quantified within 5 min in our DEP system. Capturing efficiencies higher than 95% could be 2 μm polystyrene beads with a linear flow speed, applied voltage and frequency of 0.89 mm s−1, 20 Vp-p and 5 MHz. Yeast cells (Candida glabrata and Candida albicans) could also be captured even at a lower concentration of 2.5 × 105 cells ml−1. Images of aggregative particles taken from the designed trapping area were further processed based on the intensity of relative greyscale followed by correction of the particle numbers. The imaging-based quantification method showed higher agreement than that of the conventional counting chamber method and proved the stability and feasibility of our AC DEP system.  相似文献   

12.
Reversibly assembled microfluidic devices are dismountable and reusable, which is useful for a number of applications such as micro- and nano-device fabrication, surface functionalization, complex cell patterning, and other biological analysis by means of spatial–temporal pattern. However, reversible microfluidic devices fabricated with current standard procedures can only be used for low-pressure applications. Assembling technology based on glass–PDMS–glass sandwich configuration provides an alternative sealing method for reversible microfluidic devices, which can drastically increase the sealing strength of reversibly adhered devices. The improvement mechanism of sealing properties of microfluidic devices based on the sandwich technique has not been fully characterized, hindering further improvement and broad use of this technique. Here, we characterize, for the first time, the effect of various parameters on the sealing strength of reversible PDMS/glass hybrid microfluidic devices, including contact area, PDMS thickness, assembling mode, and external force. To further improve the reversible sealing of glass–PDMS–glass microfluidic devices, we propose a new scheme which exploits mechanical clamping elements to reinforce the sealing strength of glass–PDMS–glass sandwich structures. Using our scheme, the glass–PDMS–glass microchips can survive a pressure up to 400 kPa, which is comparable to the irreversibly bonded PDMS microdevices. We believe that this bonding method may find use in lab-on-a-chip devices, particularly in active high-pressure-driven microfluidic devices.  相似文献   

13.
In this paper, we report the use of a single masking film for deep glass etching in hydrofluoric acid (HF). Thin film silver (Ag) is the key masking material in this work enabling a simple and low cost fabrication of microfluidic structures. The Ag film was deposited by evaporation and etched in a diluted nitric acid and de-ionized water solution at a ratio of 1:3. Surface morphology for different thicknesses of Ag film and its correlation to the maximum achievable etch depth is analyzed. AFM results shows low roughness values (<5 nm), indicating the Ag films are of smooth surface. With a 100 nm Ag film, a 220 μm etch depth in borosilicate glass substrates were produced and by further thickening the Ag to 300 nm, etch depths exceeding 300 μm were successfully achieved. SEM images show that thinner Ag films are of finer grains, potentially a source for pinholes formation where rapid penetration of HF along the grain boundaries peels off the Ag film from the glass surface. However, the Ag film was found not to react with HF. The process was demonstrated in the fabrication of cavities for integration with other microfluidic devices.  相似文献   

14.
This paper describes the design and fabrication of a guide block and micro probes, which were used for a vertical probe card to test a chip with area-arrayed solder bumps. The size of the fabricated guide block was 10 mm × 6 mm. The guide block consisted of 172 holes to insert micro probes, 2 guide holes for exact alignment, and 4 holes for bolting between the guide block and the housing of a PCB. Pitch and size of the inserting holes were 80 μm, and 90 μm × 30 μm, respectively. A silicon on insulator wafer was used as the substrate of the guide block to reduce micro probes insertion error. The micro probes were made of nickel–cobalt (Ni–Co) alloy using an electroplating method. The length and thickness of the micro probes were 910 and 20 μm, respectively. A vertical probe card assembled with the fabricated guide block and micro probes showed good xy alignment and planarity errors within ±4 and ±3 μm, respectively. In addition, average leakage current and contact resistance were approximately 0.35 nA and 0.378 ohm, respectively. The proposed guide block and micro probes can be applied to a vertical probe card to test a chip with area-arrayed solder bumps.  相似文献   

15.
We present a simple, versatile method for the in-situ fabrication of membranes inside a microfluidic channel during a chip manufacturing process using only two extra slanted angle holographic exposure steps. This method combines the strengths of both inclined UV exposure and holographic lithography to produce micrometer-sized three-dimensional sieving structures. Using a common chip material, the photoresist material SU-8, together with this method, a leak-free membrane-channel connection is obtained. The resulting membranes are monodisperse, with a very well-defined pore geometry (i.e., microsieves with a pore diameter between 500 nm and 10 μm) that is easily controllable with the holographic set-up. The selectivity of in-situ fabricated microsieves with a pore diameter of 2 μm will be demonstrated using polystyrene beads of 1 and 3 μm.  相似文献   

16.

The development of innovative and reliable techniques for devices miniaturization are enabling the massive growth of lab on chip (LOC) applications. In this article, we briefly review the technological options for LOC microfabrication, then we present the optimization of a process for the realization of tridimensional multi-layered structures and buried channels in a microfluidic network using a photo-patternable dry film, with a potential for LOC manufacturing. The tuning of all the fabrication parameters is widely discussed and micrographs and optical profiler images are reported to show fabrication results. The fabrication process is used for a Split-flow-thin (SPLITT) fractionation cell configuration. SPLITT is a particle fractionation technique based on the combined effect of two laminar streams (the sample containing the particles and a carrier) flowing inside a thin microchannel and the action of a vertical driving force for particle displacement. Since the SPLITT implemented in this work is electrically driven, patterned electrodes (thickness: 100 nm) are also integrated in the flow cell walls. The functionality of the cell was tested first verifying the presence of proper flow conditions for microfluidic SPLITT (absence of mixing between the streams) and then proving electrical fractionation with two different proteins (BSA and β-lactoglobulin) at different levels of ionic strength. The flow of the streams within the microfluidic channel was also simulated by a numerical 2-D model exactly reproducing the cell geometry, with a good accordance with experimental results.

  相似文献   

17.
The study deals with a microfluidic method to investigate the transient behavior of microcapsules in flow. The technique consists of investigating ovalbumin microcapsules passing through a convergent–divergent microchannel made of PolyDiMethylSiloxane. We work with three types of square microchannel with, respectively, cross section values of h × h = 30 × 30, 50 × 50 and 70 × 70 μm. The microchannels length is L = 3h. We analyze the kinetics of deformation of the microcapsules in the microchannels for velocity ranging from 2 to 5 cm/s and for microcapsule size ratio d/h ranging from 0.9 to 2.5. The relaxation process at the pore outlet is modeled using an exponential relaxation law. We show that that the relaxation time at the divergent outlet depends on the microcapsule size ratio d/h. Thanks to the analytical expression of the relaxation, we extract a shear modulus of the membrane equal to 0.04 N/m. This value is consistent with the value of 0.07 N/m that we found using the steady state analysis performed in cylindrical glass capillaries. Thus, it is interesting to notice that the microcapsule behavior based on a simple analytical model can be successfully described despite the complex flow situation consisting of deformable microcapsule in confined square microchannels.  相似文献   

18.
An improved microfabrication method was used to fabricate a continuous-flow PCR (polymerase chain reaction) microfluidic chip on the PMMA substrate using the low-power CO2 laser ablation technique. The use of the low-power CO2 laser and the PMMA material could reduce the cost and the time of the fabrication process, especially at the step of laboratory research because of the high flexibility of the laser fabrication technique and the low cost of PMMA. A CO2 laser output power of 4.5 W and a laser scanning velocity of 76.2 mm/s were chosen to fabricate the chip in this work. The micromachining quality could satisfy the microfluidic requirement of the PCR mixture within the microchannel. Good temperature distribution and gradient were obtained on the PMMA chip with a home-built integrated heating system. An amplification of DNA template with a 990 base pair fragment of Pseudomonas was successfully performed with this chip to characterize its availability and performance with various flow rates.  相似文献   

19.
This paper develops novel polymer transformers using thermally actuated shape memory polymer (SMP) materials. This paper applies SMPs with thermally induced shape memory effect to the proposed novel polymer transformers as on-chip microfluidic vacuum generators. In this type of SMPs, the morphology of the materials changes when the temperature of materials reaches its glass transition temperature (T g). The structure of the polymer transformer can be pre-programmed to define its functions, which the structure is reset to the temporary shape, using shape memory effects. When subjected to heat, the polymer transformer returns to its pre-memory morphology. The morphological change can produce a vacuum generation function in microfluidic channels. Vacuum pressure is generated to suck liquids into the microfluidic chip from fluidic inlets and drive liquids in the microchannel due to the morphological change of the polymer transformer. This study adopts a new smart polymer with high shape memory effects to achieve fluid movement using an on-chip vacuum generation source. Experimental measurements show that the polymer transformer, which uses SMP with a T g of 40°C, can deform 310 μm (recover to the permanent shape from the temporary shape) within 40 s at 65°C. The polymer transformer with an effective cavity volume of 155 μl achieved negative pressures of −0.98 psi. The maximum negative up to −1.8 psi can be achieved with an effective cavity volume of 268 μl. A maximum flow rate of 24 μl/min was produced in the microfluidic chip with a 180 mm long channel using this technique. The response times of the polymer transformers presented here are within 36 s for driving liquids to the end of the detection chamber. The proposed design has the advantages of compact size, ease of fabrication and integration, ease of actuation, and on-demand negative pressure generation. Thus, this design is suitable for disposable biochips that need two liquid samples control. The polymer transformer presented in this study is applicable to numerous disposable microfluidic biochips.  相似文献   

20.
Liu  Yafei  Hansen  Andrew  Shaha  Rajib Krishna  Frick  Carl  Oakey  John 《Microsystem Technologies》2020,26(12):3581-3589

Microfluidics, an increasingly ubiquitous technology platform, has been extensively utilized in assorted research areas. Commonly, microfluidic devices are fabricated using cheap and convenient elastomers such as poly(dimethylsiloxane) (PDMS). However, despite the popularity of these materials, their disadvantages such like deformation under moderate pressure, chemical incompatibility, and surface heterogeneity have been widely recognized as impediments to expanding the utility of microfluidics. Glass-based microfluidic devices, on the other hand, exhibit desirable properties including rigidity, chemically inertness, and surface chemistry homogeneity. That the universal adoption of glass-based microfluidics has not yet been achieved is largely attributable to the difficulties in device fabrication and bonding, which usually require large capital investment. Therefore, in this work, we have developed a bench-scale glass-to-glass bonding protocol that allows the automated bonding of glass microfluidic devices within 6 h via a commercially available furnace. The quality of the bonds was inspected comprehensively in terms of bonding strength, channel deformation and reliability. Additionally, femtosecond pulsed laser micromachining was employed to rapidly engrave channels on a glass substrate with arbitrary-triangular in this case-cross-section. Bonded glass microfluidic devices with machined channels have been used to verify calculated capillary entry pressures. This combination of fast laser micromachining that produces arbitrary cross-sectioned microstructures and convenient bench-scale glass bonding protocol will facilitate a broad range of micro-scale applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号