首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality and various doped Bi2Sr2−x La x CuO6+δ (x=0–0.90) single crystals were obtained by floating-zone method. Analysis of the thermal behavior indicated an incongruent melt for all the doped compounds. The segregation coefficient of La related to Sr was estimated to be ∼1.02. Chemical compositions including the La doping in the crystals were accurately determined to study the effect of doping on the structural, chemical and superconducting property of the compounds. Raman spectra were performed to show the high-frequency modes 627 cm−1 softened with increasing the doping level of La. Implications of the doping effect on crystals for understanding the superconductivity are discussed.  相似文献   

2.
We report a dc sputtering method for the fullin situ preparation of Bi2Sr2CaCu2O8+ thin films on SrTiO3 and LaAlO3.T c values of more than 90 K can be achieved by oxidizing annealing below the melting point, followed by a reducing anneal at 500°C. The structural properties of the films are revealed by X-ray diffraction in Bragg-Brentano geometry (strongc-axis orientation with FWHM (0 0 10)=0.3) and also by scans (epitaxy within the substrate plane). Rutherford backscattering and channeling confirmed the correct composition of the cations while the minimum yield, min, is 23%. Depth profiles by SNMS show a very homogeneous distribution of the cations with no detectable loss of bismuth near the surface. The surface morphology of the films was studied by SEM and by STM. Patterning of the films in lateral geometry can be performed by photolithographic techniques without degradation ofT c .  相似文献   

3.
We measured the complex conductivity of Ca-doped YBCO thin films in the THz frequency range. The films were measured using both Time domain and Frequency domain methods for THz spectroscopy. We show that a subgap exists in the overdoped samples of 5% and 10% Ca doping. The subgap appears as a sharp decrease in the real part of conductivity at frequencies equivalent to gap energy of 1 meV and is more prominent with increased doping. We suggest that this decrease in conductivity is related to a dx2-y2d_{x^{2}-y^{2}}-wave pairing symmetry with an imaginary part of is or id xy . The imaginary part of the conductivity shows the well-known 1/ω behavior, but its ωσ 2 product shows a dip in the spectrum at about ∼1 meV.  相似文献   

4.
The dc conductivity and the high-frequency capacitance of a La2CuO4+ single crystal are determined by impedance spectroscopy in the frequency range 20 Hz to 1 MHz at liquid helium temperature. Using isochronal annealing, the effect of the phase separation on these quantitites is studied for E parallel and perpendicular to the CuO2 planes as well as for different oxygen doping levels,, of the sample. The results are consistent with the model of a diffusion-controlled formation of a metallic—and belowT c superconducting—percolation network in an insulating background.  相似文献   

5.
Thin film growth of Bi2Sr2Ca n–1Cu n O2n+4+ by molecular beam epitaxy is performed on Nd : YAlO3 (001) substrates. It was revealed that the orthorhombicity of the Nd:YAlO3 substrate is quite effective to the growth of untwinned Bi2Sr2Ca n–1Cu n O2n+4+ thin films. In all phases withn=13, the incommensurate structural modulation lies parallel to the Nd : YAlO3 [100] direction, and this relation holds even in the case of superlattices. The origin of the epitaxial relation is discussed from the viewpoint of the lattice misfit. The orthorhombicity of the substrate competes with the step edges on a vicinally polished substrate for determining the in-plane growth direction. The rotation of the modulation direction was observed when the off angles are varied.  相似文献   

6.
A series of oxidized La2–x Sr x CuO4+y compounds has been prepared by treating the starting materials with a solution of Br2 in NaOH at room temperature. The structural modifications due to the oxidation of the materials have been studied by X-ray diffraction. Some of the observed changes are: (i) a large increase in the long parameter of the unit cell for samples with Sr content and (ii) a slight decrease in a along the whole range ofx. Interesting features have been observed regarding the critical temperatures of these materials: transition temperatures are higher for those containing lower Sr amounts (some of them were even nonsuperconducting before the oxidation treatment) in contrast to materials with x0.15, whoseT c's do not change very much. The influence of both oxygen and strontium contents on the structural modifications and the superconducting properties of the oxidized materials will be discussed.  相似文献   

7.
We report transverse-field muon-spin-rotation experiments carried out on Tl2Ba2CuO6+ . This system spans the whole overdoped regime, andT c is reduced by excess oxygen doping, which increases the normal-state carrier concentration. In the heavily overdoped regime(0) is found to scale linearly with the superconducting critical temperatureT c , similar to the behavior previously observed for other cuprates in the underdoped regime. However, for the overdoped region one has to explain the reduction of 0, thus the increase of the magnetic penetration depth, in spite of an increasing normal-state carrier concentration. We discuss some possible explanations for this behavior.  相似文献   

8.
The data of M?ssbauer emission spectroscopy on 67Cu(67Zn) and 67Ga(67Zn) isotopes show that holes appearing as a result of the Sr2+ substitution for La3+ in the La2 − x Sr x CuO4 crystal lattice are localized predominantly at oxygen atoms occurring in the same atomic plane as the copper atoms. In contrast, electrons appearing as a result of the Ce4+ substitution for Nd3+ in the Nd2 − x Ce x CuO4 crystal lattice are localized in the copper sublattice. These results are consistent with the model assuming that a mechanism responsible for the high-temperature superconductivity in La2 − x Sr x CuO4 and Nd2 − x Ce x CuO4 crystal lattices is based on the interaction of electrons with two-site two-electron centers possessing negative correlation energies (negative-U centers).  相似文献   

9.
Bulk superconducting samples of type GdBa2Cu3−x Ru x O7−δ , Gd-123, with x=0.0–0.3 were prepared by the conventional solid-state reaction technique. X-ray powder diffraction (XRD), scanning electron microscope (SEM), electron dispersive X-ray (EDX) and electrical-resistivity measurements were performed in order to investigate the effect of Ru4+ ions substitution on Gd-123 phase. Enhancement of both phase formation and the superconducting transition temperature T c for GdBa2Cu3−x Ru x O7−δ phase up to x=0.05 was observed from XRD and electrical-resistivity measurement, respectively. This enhancement was confirmed with the calculated relative volume fraction. For x>0.05, suppression of both phase formation and T c was obtained and the superconductivity was completely destroyed around x=0.3. The normal-state electrical resistivity was analyzed by the two- and three-dimensional variable range hopping (2D-VRH and 3D-VRH) and Coulomb gap CG. The results showed that the dominant mechanism was CG for x≤0.075, while was 3D-VRH for x≥0.15.  相似文献   

10.
Muon spin rotation ( +SR) measurement provides clear evidence of the antiferromagnetic order of Cu moments below 35 K for La2–x Ba x CuO4 and below 15 K for La2–x Sr x CuO4 in the narrow range ofx where the high-T c superconductivity (SC) is suppressed remarkably. The results suggest that the change of the electronic state coupled with the lattice instability is relevant to the local suppression of SC and freezing of spin fluctuations of the Cu moment.  相似文献   

11.
The thermal variation of the electrical resistivity and thermoelectric power of Bi1.6Pb0.4Sr2Ca2Cu3O10 + pellets subjected to various degrees of deoxygenation is reported. The temperature dependence of the electrical resistivities of deoxygenated samples displays gradual transformation from metallic-like to semiconductor-like features in the normal state. All the samples however, show superconducting transition, but increasing deoxygenation depresses T C0 from 102 to 45 K. Gross features of the temperature variation of thermoelectric power observed in properly oxygenated (Bi, Pb)-2223 cuprates are retained in all the deoxygenated samples. Our results on electrical resistivity and thermoelectric power in the normal state have been found to be consistent with a two-band model.  相似文献   

12.
We report preliminary results concerning the synthesis and structural characterisation of the chromium stabilised 1201 phases: Hg1–xCrxSr2CuO4+. A systematic study of the formation of phases in this system has been undertaken, together with a combined powder neutron and synchrotron x-ray diffraction study, to address the issue of chromium clustering and ordering in this system.  相似文献   

13.
This paper investigates the crystal structure, thermal expansion, and electrical conductivity of two series of perovskites (LaMn0.25−x Co0.75−x Cu2x O3−δ and LaMn0.75−x Co0.25−x Cu2x O3−δ with x = 0, 0.025, 0.05, 0.1, 0.15, 0.2, and 0.25) in the quasi-ternary system LaMnO3–LaCoO3–“LaCuO3”. The Mn/Co ratio was found to have a stronger influence on these properties than the Cu content. In comparison to the Co-rich series (LaMn0.25−x Co0.75−x Cu2x O3−δ), the Mn-rich series (LaMn0.75−x Co0.25−x Cu2x O3−δ) showed a much higher Cu solubility. All compositions in this series were single-phase materials after calcination at 1100 °C. The Co-rich series showed higher thermal expansion coefficients (αmax = 19.6 × 10−6 K−1) and electrical conductivity (σmax = 730 S/cm at 800 °C) than the Mn-rich series (αmax = 10.6 × 10−6 K−1, σmax = 94 S/cm at 800 °C). Irregularities in the thermal expansion curves indicated phase transitions at 150–350 °C for the Mn-rich series, while partial melting occurred at 980–1000 °C for the Co-rich series with x > 0.15. I. Arul Raj—on leave from Central Electrochemical Research Institute, Karaikudi, 630006 India.  相似文献   

14.
The effect of Ag substitution on the properties of high-temperature superconductor Bi1.7Pb0.3Sr2Ca2−x Ag x Cu3O y system have been investigated. The electrical and structural properties of the samples, prepared by the conventional solid-state reaction method, have been characterized by X-ray diffraction (XRD), electrical resistance and scanning electron microscopy (SEM) studies. XRD analysis reveals a multiphase structure of the samples, whereas SEM micrographs indicate some morphological changes induced by silver addition. It was found that an increase of the amount of Ag2O addition leads to an enhancement of the critical temperature and the percentage of Bi-2223 phase in the phase mixture.  相似文献   

15.
The flux pinning energy and magnetic properties of Bi1.64−x Pb0.36Cd x Sr2Ca2Cu3O y (BPCSCCO) with x=0.0, 0.02, 0.04 and 0.06 were studied. A series of Bi-2223 superconductor samples with a nominal composition of BPCSCCO was synthesized and the effect of Cd substitution for Bi was investigated. As a result, Cd addition has been found to improve the superconducting properties of the Bi-Pb-Sr-Ca-Cu-O system. The effects of the annealing time and the amount of Cd doping on the structure, AC magnetic susceptibility, ρT curves and flux pinning energy were investigated. Also, for all samples the relation between the current and voltage in the mixed state was found to follow the model relationship V=α I β . The maximum value of β is 22.30, which is obtained for the sample with an annealing time of 270 h and a Cd content of 0.04.  相似文献   

16.
The effects of Cr in ErBa2(Cu1–x Cr x )O7– (x=0–0.1) superconductor have been investigated. The critical temperature, which was determined by DC electrical resistance measurements, showed no suppression of the onset temperature (T c onset) within the substitution range. The transition width (T c ) broadened as the Cr content is increased. The normal state changes from the metal-like to semimetal/semiconductor-like for x0.03. Micrographs from the scanning electron microscope, X-ray diffraction pattern, and energy dispersive X-ray analysis results are used to describe the superconducting properties of these materials. The orthorhombic structure was preserved throughout the substitution range. Some possible roles of Cr in the system are discussed.  相似文献   

17.
Investigations of Y1–x M x Ba2Cu3O7– (M=Ce, Th)c-axis oriented thin film specimens show that the rate of depression ofT c withx is larger for M=Th, than for M=Ce and Pr, and suggest that Ce, like Th, is tetravalent in this compound. Hall effect measurements on Y1–x Pr x Ba2Cu3O7– single crystals reveal aT 2 dependence of the cotangent of the Hall angle in the normal state and a negative Hall anomaly belowT c in the superconducting state, in agreement with recent reports. Our research shows that the depth, , of the negative Hall signal scales withT/T c and that the maximum value of decreases linearly withx and vanishes atx0.24. Magnetoresistance measurements on Y1–x Pr x Ba2Cu3O7– single crystals indicate that the irreversibility lineH(T *) obeys a universal scaling relation characterized by anm=3/2 power law nearT c, with a crossover to a more rapid temperature dependence of belowT/T c 0.6, similar to that observed for polycrystalline specimens.  相似文献   

18.
We have studied the ac response of Sn doped Cu0.5Tl0.5Ba2Ca2Cu3−x Sn x O10−δ superconductor samples from their ac-susceptibility measurements under different magnitudes of ac magnetic fields; H ac=0.4, 4, 16 A/m. The samples with x=0.5 and 1.0 have shown strong flux pinning and intergrain coupling. However, the sample with Sn doping of x=1.5 has shown very poor flux pinning characteristics.  相似文献   

19.
The effect of synthesis temperature on the superconducting properties of (Cu1−x Tl x )Ba2Ca3Cu4O12−δ (CuTl-1234) samples has been explored. Almost all the superconducting parameters studied in this research work are observed to be suppressed with the increase of synthesis temperature beyond 880 °C, which may be due to impurities caused by the volatility of some constituents such as thallium and oxygen deficiencies as well in the final compound. The Fluctuation Induced Conductivity (FIC) analysis has shown a decrease in the cross-over temperature (T 0) and the shift of three-dimensional (3D) Aslamasov–Larkin (AL) regions to the lower temperature with the increase of synthesis temperature beyond 880 °C. A direct correlation between the cross-over temperature (T 0), the zero temperature coherence length {ξ c (0)}, the zero resistivity critical temperature {T c (R=0)} as well as carrier concentration has also been observed.  相似文献   

20.
The effect of Pb doping on the superconducting properties of (Cu0.5−x Pb x Tl0.5)Ba2Ca2Cu3O10−δ (x=0.0, 0.15, 0.25, 0.35) samples has been investigated. Lead is doped in Cu0.5Tl0.5Ba2O4−δ charge reservoir layer and at the CuO2 planar sites. A multiphase material is achieved with the doping of Pb at the CuO2 planar sites; however, a predominant single-phase (Cu0.5−x Pb x Tl0.5)Ba2Ca2Cu3O10−δ (x=0.0, 0.15, 0.25, 0.35) material is synthesized with the doping of Pb at the charge reservoir layers. Formation of multiphase material with the doping of lead at the planar sites showed that its substitution at the planar site is not possible and the formation of PbO2 planes is less likely. In the samples doped at the charge reservoir layer, the zero critical temperature [T c (R=0)] is systematically depressed with the increased concentration of lead. The T c (R=0) and magnitude of the diamagnetism are enhanced after post-annealing the samples in oxygen atmosphere. An apical oxygen mode is observed around 438 cm−1 in undoped samples, which is shifted to 457–461 cm−1 in the Pb-doped samples. This shift in the peak position is most likely associated with the connectivity of apical oxygen atoms with Pb atoms of (Cu0.5−x Pb x Tl0.5)Ba2O4−δ (x=0.0, 0.15, 0.25, 0.35) charge reservoir layers. The presence of Pb in the charge reservoir layer and its increased concentration, somehow, stops the flow of mobile carriers to the conducting CuO2 planes. The decreased density of mobile carriers diminishes the critical temperature and magnitude of diamagnetism in the final compound. The increased oxygen diffusion in the unit cell achieved by post-annealing in oxygen replenishes the concentration of carriers in conducting CuO2 planes, which increases the T c (R=0) and the magnitude of diamagnetism. These experiments have shown that the density of mobile carriers plays a vital role in the mechanism of superconductivity and their depressed density suppresses the superconductivity parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号