首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dental implants are an established therapy for oral rehabilitation. High success rates are achieved in healthy bone, however, these rates decrease in compromised host bone. Coating of dental implants with components of the extracellular matrix is a promising approach to enhance osseointegration in compromised peri-implant bone. Dental titanium implants were coated with an artificial extracellular matrix (aECM) consisting of collagen type I and either one of two regioselectively low sulfated hyaluronan (sHA) derivatives (coll/sHA1Δ6s and coll/sHA1) and compared to commercial pure titanium implants (control). After extraction of the premolar teeth, 36 implants were inserted into the maxilla of 6 miniature pigs (6 implants per maxilla). The healing periods were 4 and 8 weeks, respectively. After animal sacrifice, the samples were evaluated histomorphologically and histomorphometrically. All surface states led to a sufficient implant osseointegration after 4 and 8 weeks. Inflammatory or foreign body reactions could not be observed. After 4 weeks of healing, implants coated with coll/sHA1Δ6s showed the highest bone implant contact (BIC; coll/sHA1Δ6s: 45.4 %; coll/sHA1: 42.2 %; control: 42.3 %). After 8 weeks, a decrease of BIC could be observed for coll/sHA1Δ6s and controls (coll/sHA1Δ6s: 37.3 %; control: 31.7 %). For implants coated with coll/sHA1, the bone implant contact increased (coll/sHA1: 50.8 %). Statistically significant differences could not be observed. Within the limits of the current study, aECM coatings containing low sHA increase peri-implant bone formation around dental implants in maxillary bone compared to controls in the early healing period.  相似文献   

2.
Several dental implants are commercially available and new prototype design are constantly being fabricated. Nevertheless, it is still unclear what parameters of the design affect most the osseointegration of dental implants. The purpose of this study is to assess the effects of the microscopic and macroscopic design of dental implants in the osseointegration by comparing three macroscopic designs (Straumann tissue level (STD), essential cone (ECD) and prototype design (PD)) and six surface treatments. A total of 96 implants were placed in 12 minipigs. The implant stability quotient (ISQ), was assessed at the time of implantation, as well as at 2, 4 and 8 weeks. Histomorphometric and statistical analyses were conducted at the different sacrifice times, being 2, 4 and 8 weeks, to analyse the bone to implant contact (BIC), the bone area density (BAT) and the density of bone outside the thread region (ROI). The macroscopic design results showed higher ISQ values for the ECD, whereas the histomorphometric analysis showed higher ossoeintegration values for the STD. Regarding the microscopic design, both Sandblasted plus acid etching (hydrochloric/sulphuric acid) in a nitrogen atmosphere (SLActive) and Shot-blasted or bombarded with alumina particles and posterior alkaline immersion and thermal treatment (ContacTi) showed superior results in terms of osseointegration and reduced the osseointegration times from 8 weeks to 4 weeks compared to the other analysed surfaces. In conclusion, each of the macroscopic and microscopic designs need to be taken into account when designing novel dental implants to enhance the osseointegration process.  相似文献   

3.
The aim of this study was to analyse the osseointegrative potential of phosphoserine-tethered dendrons when applied as surface functionalisation molecules on titanium implants in a sheep model after 2 and 8 weeks of implantation. Uncoated and dendron-coated implants were implanted in six sheep. Sandblasted and etched (SE) or porous additive manufactured (AM) implants with and without additional dendron functionalisation (SE-PSD; AM-PSD) were placed in the pelvic bone. Three implants per group were examined histologically and six implants were tested biomechanically. After 2 and 8 weeks the bone-to-implant contact (BIC) total values of SE implants (43.7 ± 12.2; 53.3 ± 9.0 %) and SE-PSD (46.7 ± 4.5; 61.7 ± 4.9 %) as well as AM implants (20.49 ± 5.1; 43.9 ± 9.7 %) and AM-PSD implants (19.7 ± 3.5; 48.3 ± 15.6 %) showed no statistically significant differences. For SE-PSD and AM-PSD a separate analysis of only the cancellous BIC demonstrated a statistically significant difference after 2 and 8 weeks. Biomechanical findings proved the overall increased stability of the porous implants after 8 weeks. Overall, the great effect of implant macro design on osseointegration was further supported by additional phosphoserine-tethered dendrons for SE and AM implants.  相似文献   

4.
The aim of this study was to evaluate the early osseointegration of implants with the same surface treatment in different implant sites in rabbit tibias after 4 weeks. A total of 42 acid-etched implants were implanted in three different sites in the tibia: group A was 2.08 ± 0.18 mm below epiphyseal line; group B was 7.00 ± 0.61 mm below the epiphyseal line; group C was 13.01 ± 1.26 mm below the epiphyseal line. After 4 weeks, the average bone-to-implant contact (BIC) values were as follows: group A, 40.02 ± 4.82 %; group B, 28.20 ± 5.41 %; group C, 20.76 ± 3.10 %. The BIC measurements yielded statistically significant differences among group A, group B and group C (P < 0.01); group A demonstrated the best osseointegration. In the present study, the different implantation sites in the selected 20-mm area demonstrated different early osseointegration; the sites located 7 ± 1.5 mm below the epiphyseal line were best suited for observing the effectiveness of early osseointegration among the three sites. The statistical results of the early osseointegration of implants are therefore affected by the location of the implant sites in this 20-mm area.  相似文献   

5.
Two different imaging techniques used to determine bone tissue response to dental implants were compared. Dental implants were implanted into the maxillae of 18 pigs, which were sacrificed after 4, 8 and 12 weeks. Implants with surrounding bone tissue were retrieved for methyl methacrylate histology and contact radiography. On identical sections peri-implant bone density and bone implant contact (BIC) ratio were assessed with two different imaging methods. Evaluation of Giemsa eosin stained and contact radiographed sections showed direct osseous integration for all implants and both methods showed a strong correlation with correlation coefficient r = 0.930 (P < 0.0001) for peri-implant bone density and r = 0.817 (P < 0.0001) for bone implant contact ratio. While the two imaging methods showed moderate differences for peri-implant bone density there were significant differences between the BIC values determined. In general, contact radiography tends to underestimate BIC for approximately 4.5 % (P = 0.00003).  相似文献   

6.
The present study assessed in vivo new bone formation around titanium alloy implants chemically grafted with macromolecules bearing ionic sulfonate and/or carboxylate groups. Unmodified and grafted Ti–6Al–4V exhibiting either 100% carboxylate, or 100% sulfonate, or both carboxylate and sulfonate groups in the percent of 50/50 and 80/20 were bilaterally implanted into rabbit femoral condyle. Neither toxicity nor inflammation were observed for all implants tested. After 4 weeks, peri-implant new bone formation varied as a function of the chemical composition of the titanium surfaces. The percent bone-implant contact (BIC) was the lowest (13.4 ± 6.3%) for the implants modified with grafted carboxylate only. The value of BIC on the implants with 20% sulfonate (24.6 ± 5.2%) was significantly (P < 0.05) lower than that observed on 100% sulfonate (38.2 ± 13.2%) surfaces. After both 4 and 12 weeks post-implantation, the BIC value for implants with more than 50% sulfonate was similar to that obtained with the unmodified Ti–6Al–4V. The grafted titanium alloy exhibiting either 100% sulfonate or carboxylate and sulfonate (50% each) groups promoted bone formation. Such materials are of clinical interest because, they do not promote bacteria adhesion but, they support new bone formation, a condition which can lead to osseointegration of bone implants while preventing peri-implant infections.  相似文献   

7.
The surface properties of titanium alloy implants for improved osseointegration in orthopaedic and dental surgery have been modified by many technologies. Hydroxyapatite coatings with a facultative integration of growth factors deposited by plasma spraying showed improved osseointegration. Our approach in order to enhance osseointegration was carried out by a surface modification method of titanium alloy implants called plasma chemical oxidation (PCO). PCO is an electrochemical procedure that converts the nm‐thin natural occurring titanium‐oxide layer on an implant to a 5 µm thick ceramic coating (TiOB‐surface). Bioactive TiOB‐surfaces have a porous microstructure and were loaded with calcium and phosphorous, while bioinert TiOB‐surfaces with less calcium and phosphorous loadings are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB‐surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (i) pure titanium alloy (control), ii) titanium alloy, type III anodization, (iii) bioinert TiOB‐surface, and (iv) bioactive TiOB‐surface. Mechanical fixation was evaluated by pull out tests at 3 and 8 weeks. The bioactive TiOB‐surface showed significantly increased shear strength at 8 weeks compared to all other groups.  相似文献   

8.
Model to analyse the bone on‐growth on bioactive coated implant surfaces Especially on the field of bone regeneration, transient and permanent implants are an important method of therapy in the Orthopaedic Surgery. In this context, bioactive surfaces on metallic implants provide an improved contact to the surrounding bone. The goal of our study was to establish an in‐vitro test system to evaluate the on‐growth of bone‐derived cells on different surface coatings. Therefore, we invented a special kind of clamps made of commercially‐pure (c‐p) titanium and blasted with hydroxyapatite particles followed by electrochemically coating with calcium phosphate (BONIT®‐HA, BONIT®). Definite pieces of human cancellous bone were attached to these clamps, inserted onto tissue culture plates and cultivated in DMEM for ten days. Finally, the contact area between human cancellous bone and the implant surface was analyzed and the spreading of osteoblast‐like cells evaluated by scanning electron microscopy (SEM). A well‐spread morphology of bone cells was observed on the implant surfaces coated with calcium phosphate (CaP). In comparison the clamps without CaP coatings showed only a marginal growth of bone cells on the clamp surface. The presented newly in‐vitro test setup using titanium clamps coated with bioactive layers attached to human cancellous bone represents a well‐functioning model for qualitative evaluation of bone on‐growth.  相似文献   

9.
Parathyroid hormone (PTH) is a well-known therapeutic agent for osteoporosis treatment, however, the inconvenience of daily administration and side effect from systematic administration severely limits its application in clinic. PTH has been incorporated into a biomimetic calcium phosphate (CaP) coating via a co-precipitation method in a modified simulated body fluid. The aim of the current study is to evaluate the osseointegration response of PTH incorporated CaP coating on titanium implants. Implants with different doses of PTH were inserted into tibiae of mice and evaluated by X-ray, micro-CT, histology and back-scattered scanning electron microscopy. Improved osseointegration of the implants loaded with PTH was observed compared to CaP coating only after 28?days of implantation in mouse tibiae. Micro-CT analysis showed better bone integration around the implant incorporated with PTH. Bone area and bone contact evaluations have demonstrated that peri-implant bone regeneration is highly dependent on the dosage of PTH incorporated. The higher the PTH content, the more bone formed surrounding the implant. Therefore, our results suggest that biomimetic CaP coating could be a useful a carrier for PTH local delivery, which results in improved bone-to-implant integration.  相似文献   

10.
Electrochemically deposited calcium phosphate (CaP) coatings are fast resorbable and existent only during the first period of osseointegration. In the present study, composite coatings with varying solubility (hydroxyapatite (HA), brushite with less HA and monetite (M) with less HA) were prepared and the influence of the degradation and the reprecipitation of CaP on osteoblastic cells were investigated. On the brushite composite coating a new precipitated, finely structured CaP phase was observed during immersion in cell culture medium with or without osteoblastic cells. The surface morphology of monetite and HA coatings were entirely unmodified under the same conditions. So it could be assumed that electrochemically deposited brushite with less HA acts as a precursor for new precipitated CaP. On this surface osteoblastic cells revealed a well-spread morphology with pronounced actin cytoskeleton and demonstrated good proliferation behaviour. Thus we suggest that brushite seems to be especially suitable for coating of implants as a matrix for nucleation and growth of new bone.  相似文献   

11.
This study examined the effects of a nanotubular surface treatment on an implant by anodic oxidation. Forty two screw-shaped implants were classified into 3 groups; machined surface (control group), nanotube formation on the machined surface (group N) and nanotube formation on the RBM surface (group RN). A total of 36 implants were inserted into a beagle femur. Two implants from each group were observed by scanning electron microscopy. Histomorphometric analyses were performed after 4 and 12 weeks. After 4 weeks, the average bone to implant contact (BIC) ratio of groups N and RN was significantly higher than that of the control group (P < .05). After 12 weeks, a nanotubular surface treatment showed a significantly higher BIC ratio only in the marrow space adjacent to the implant apex (P < .05). This in vivo study revealed the enhanced osseointegration of nanotubes.  相似文献   

12.
The osseointegration of long‐term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP‐2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP‐2 on the formation of new bone around titanium implants was studied. A total of 8 titanium‐alloy cylinders (Ti‐6Al‐4V) with a plasma spray coating (TPS; 400 μm thickness) were implanted into femoral condyles of mature sheep: rhBMP‐2 solution (1 μg) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP‐2‐free controls. Two of these controls exhibited an additional calciumphosphate‐coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow‐up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP‐2‐solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS‐controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP‐2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long‐term implants (e. g. joint replacements) with rhBMP‐2‐biocoating for humans.  相似文献   

13.
Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.  相似文献   

14.
In order to improve the biocompatibility of metallic implants, bioactive components are often used as coatings so that a real bond with the surrounding bone tissue can be formed. We prepared ethyl cellulose/carbonated hydroxyapatite composite coatings (ECHCs) on Ti6Al4V substrates with carbonated hydroxyapatite coatings (CHACs) without ethyl cellulose as controls. The inorganic constituent on the CHACs and ECHCs is calcium-deficient carbonated hydroxyapatite with a flaky texture and a low degree of crystallinity. The flaky carbonated hydroxyapatite plates aggregate to form macropores with an aperture size of around 0.5–2.0 μm. The presence of ethyl cellulose provides superior morphology, contact angle, and biocompatibility characteristics. In comparison to CHACs, ECHCs exhibit a smoother, crack-free surface because the cracks are filled by ethyl cellulose. Moreover, the contact angle of ECHCs is 37.3°, greater than that of CHACs (13.0°). Surface biocompatibility was investigated by using human bone mesenchymal stem cells (hBMSCs). The attachment, spreadability, viability and proliferation of hBMSCs on ECHCs are superior to those on CHACs. Thus, the crack-free ECHCs have excellent biocompatibility and are appropriate for use as biological implants.  相似文献   

15.
Abstract

Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.  相似文献   

16.
This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5?kg each) were included in this study. Twelve implants (3.75?mm wide, 7?mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3?weeks of healing radiographic evaluation of the implant sites was taken. After 6?weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2?weeks after surgery. Thus, at least four rabbits per group survived after 6?weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6?weeks of healing. Radiography observations showed good osseointegration after 3 and 6?weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P?>?0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P?>?0.05) between implants coated with GL13K peptide and implants without coating. This study demonstrates that titanium dental implants with an antimicrobial GL13K coating enables in vivo implant osseointegration at similar bone growth rates than gold-standard non-coated dental implants up to 6?weeks of implantation in rabbit femurs.  相似文献   

17.
The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing dl-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium–zirconium, anodized titanium and anodized titanium–zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium–zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium–zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.  相似文献   

18.
The amorphous phase/TiO2 nanocrystals (APTN) composited coatings were prepared on Ti implants for biomedical applications. The Ti implants without and with the APTN composited coatings both do not cause any adverse effects after implantation into the rabbit tibia. The osseointegration of Ti implants after covering the APTN coatings is improved pronouncedly, greatly increasing the interface bonding strength between the implants and newly formed bones. In addition, it is interesting that the newly formed bone tissues appear in the micro-pores of the APTN coatings, promoting the interface bonding between the implants and new bones by the mechanical interlock. Moreover, the Ti implant with the APTN coatings formed at higher applied voltage exhibit higher shear strength and displacement during the pushing out experiment probably due to its better osseointegration.  相似文献   

19.
Methods to improve osseointegration that include implantation of rhBMP-2 with various kinds of carriers are currently of considerable interest. The present study was conducted to evaluate if the rhBMP-2 loaded β-TCP microsphere-hyaluronic acid-based powder-like hydrogel composite (powder gel) can act as an effective rhBMP-2 carrier for implantation in host bone with a bone defect or poor bone quality. The release pattern for rhBMP-2 was then evaluated against an rhBMP-2-loaded collagen sponge as a control group. Dental implants were also inserted into the tibias of three groups of rabbits: an rhBMP-2 (200 µg) loaded powder gel composite implanted group, an implant only group, and a powder gel implanted group. Micro-CT and histology of the implanted areas were carried out four weeks later. The rhBMP-2 powder gel released less rhBMP-2 than the collagen sponge, but it continued a slow release for more than 7 days. The rhBMP-2 powder gel composite improved osseointegration of the dental implant by increasing the amount of new bone formation in the implant pitch and it improved the bone quality and bone quantity of new bone. The histology results indicated that the rhBMP-2 powder gel composite improved the osseointegration in the cortical bone as well as the marrow space along the fixture. The bone-to-implant contact ratio of the rhBMP-2 (200 µg) loaded powder gel composite implanted group was significantly higher than those of the implant only group and the powder gel implanted group. The powder gel appeared to be a good carrier and could release rhBMP-2 slowly to promote the formation of new bone following implantation in a bone defect, thereby improving implant osseointegration.  相似文献   

20.
Objectives The aim of the present study was to evaluate six different implant surface coatings with respect to bone formation. Being major structural components of the extracellular matrix, collagen, the non-collagenous components decorin/chondroitin sulphate (CS) and the growth factors TGF-β1/BMP-4 served in different combinations as coatings of experimental titanium implants. Materials and methods Eight miniature pigs received each six implants in the mandible. The implant design showed two circular recesses along the length axis. Three, four, five and six weeks after implant placement, the animals were sacrificed in groups of two. Bone-implant contact (BIC) was evaluated along the outer implant surface and within the recesses. Bone volume was determined by synchrotron radiation micro computed tomography (SRμCT) for one implant of each surface state, 6 weeks after placement. Results At each week of observation, collagen/CS or collagen/CS/BMP-4 coated implants showed the highest BIC of all surface states. This was statistically significant at week five (p = 0.030, p = 0.040) and six (p = 0.025, p = 0.005). SRμCT measurements determined the highest bone volume for a collagen/CS coated implant. Conclusion The results indicate that collagen/CS and collagen/CS/BMP-4 lead to a higher degree of bone formation compared to other ECM components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号