首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
This paper is devoted to investigating delay-dependent robust exponential stability for a class of Markovian jump impulsive stochastic reaction-diffusion Cohen-Grossberg neural networks (IRDCGNNs) with mixed time delays and uncertainties. The jumping parameters, determined by a continuous-time, discrete-state Markov chain, are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. By constructing a Lyapunov–Krasovskii functional, and using poincarè inequality and the mathematical induction method, several novel sufficient criteria ensuring the delay-dependent exponential stability of IRDCGNNs with Markovian jumping parameters are established. Our results include reaction-diffusion effects. Finally, a Numerical example is provided to show the efficiency of the proposed results.  相似文献   

2.
This paper presents new stability results for recurrent neural networks with Markovian switching. First, algebraic criteria for the almost sure exponential stability of recurrent neural networks with Markovian switching and without time delays are derived. The results show that the almost sure exponential stability of such a neural network does not require the stability of the neural network at every individual parametric configuration. Next, both delay-dependent and delay-independent criteria for the almost sure exponential stability of recurrent neural networks with time-varying delays and Markovian-switching parameters are derived by means of a generalized stochastic Halanay inequality. The results herein include existing ones for recurrent neural networks without Markovian switching as special cases. Finally, simulation results in three numerical examples are discussed to illustrate the theoretical results.  相似文献   

3.

This paper focuses on the stochastic synchronization problem for a class of fuzzy Markovian hybrid neural networks with random coupling strengths and mode-dependent mixed time delays in the mean square. First, a novel free-matrix-based single integral inequality and two novel free-matrix-based double integral inequalities are established. Next, by employing a novel augmented Lyapunov–Krasovskii functional with several mode-dependent matrices, applying the theory of Kronecker product of matrices, Barbalat’s Lemma and the new free-matrix-based integral inequalities, two delay-dependent conditions are established to achieve the globally stochastic synchronization for the mode-dependent fuzzy hybrid coupled neural networks. Finally, two numerical examples with simulation are provided to illustrate the effectiveness of the presented criteria.

  相似文献   

4.

This paper studies the problem of the robustly exponential stability of uncertain stochastic neural networks with mixed delays and Markovian jump parameters. In terms of linear matrix inequalities approach, some new delay-dependent stability criteria are established for the considered systems by constructing a modified Lyapunov–Krasovskii functional. And our derived results shown by three illustrative examples are more effective than some existing ones.

  相似文献   

5.
In this paper, we investigate the robust exponential stability for stochastic reaction-diffusion uncertain fuzzy neural networks with mixed delays and Markovian jump parameters. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain sufficient conditions for the exponential stability of the equilibrium solution. The obtained stability criteria can be easily checked by linear matrix inequality (LMI) techniques. Finally numerical examples are provided to illustrate the obtained theoretical result.  相似文献   

6.
In this letter, the global asymptotical stability analysis problem is considered for a class of Markovian jumping stochastic Cohen-Grossberg neural networks (CGNNs) with mixed delays including discrete delays and distributed delays. An alternative delay-dependent stability analysis result is established based on the linear matrix inequality (LMI) technique, which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. Neither system transformation nor free-weight matrix via Newton-Leibniz formula is required. Two numerical examples are included to show the effectiveness of the result.  相似文献   

7.
In this letter, the global asymptotical stability analysis problem is considered for a class of Markovian jumping stochastic Cohen-Grossberg neural networks (CGNNs) with mixed delays including discrete delays and distributed delays. An alternative delay-dependent stability analysis result is established based on the linear matrix inequality (LMI) technique, which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. Neither system transformation nor free-weight matrix via Newton-Leibniz formula is required. Two numerical examples are included to show the effectiveness of the result.  相似文献   

8.
Qian Ma  Shengyuan Xu  Yun Zou  Jinjun Lu 《Neurocomputing》2011,74(12-13):2157-2163
In this paper, the problem of stability analysis for a general class of uncertain stochastic neural networks with Markovian jumping parameters and mixed mode-dependent delays is considered. By the use of a new Markovian switching Lyapunov–Krasovskii functional, delay-dependent conditions on mean square asymptotic stability are derived in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the proposed approach.  相似文献   

9.
This paper is concerned with the robust delay-dependent exponential stability of uncertain stochastic neural networks (SNNs) with mixed delays. Based on a novel Lyapunov-Krasovskii functional method, some new delay-dependent stability conditions are presented in terms of linear matrix inequalities, which guarantee the uncertain stochastic neural networks with mixed delays to be robustly exponentially stable. Numerical examples are given to illustrate the effectiveness of our results.  相似文献   

10.
This paper discusses the issue of dissipativity and passivity analysis for a class of impulsive neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modelled as a continuous-time discrete-state Markov chain. Based on a multiple integral inequality technique, a novel delay-dependent dissipativity criterion is established via a suitable Lyapunov functional involving the multiple integral terms. The proposed dissipativity and passivity conditions for the impulsive neural networks are represented by means of linear matrix inequalities. Finally, three numerical examples are given to show the effectiveness of the proposed criteria.  相似文献   

11.
This paper investigates robust exponential synchronization for stochastic delayed neural networks with reaction–diffusion terms and Markovian jumping parameters driven by infinite dimensional Wiener processes. The novelty of this paper lives in the use of a new Lyapunov–Krasovskii functional and Poincaré inequality to present some criteria for robust exponential synchronization in terms of linear matrix inequalities (LMIs) and matrix measure under Robin boundary conditions. Finally, two numerical examples are provided to illustrate the effectiveness of the easily verifiable synchronization LMIs in MATLAB toolbox.  相似文献   

12.
Wuneng  Hongqian  Chunmei 《Neurocomputing》2009,72(13-15):3357
This paper is concerned with the problem of robust exponential stability for a class of hybrid stochastic neural networks with mixed time-delays and Markovian jumping parameters. In this paper, free-weighting matrices are employed to express the relationship between the terms in the Leibniz–Newton formula. Based on the relationship, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions for the mixed time-delays neural networks with Markovian jumping parameters. Finally, two simulation examples are provided to demonstrate the effectiveness of the results developed.  相似文献   

13.
This paper investigates decentralized event-triggered stability analysis of neutral-type BAM neural networks with Markovian jump parameters and mixed time varying delays. We apply the decentralized event triggered approach to the bidirectional associative memory (BAM) neural networks to reduce the network traffic and the resource of computation. A bidirectional associative memory neural networks is constructed with the mixed time varying delays and Markov process parameters. The criteria for the asymptotically stability are proposed by using with the Lyapunov-Krasovskii functional method, reciprocal convex property and Jensen’s inequality. Stability condition of neutral-type BAM neural networks with Markovian jump parameters and mixed delays is established in terms of linear matrix inequalities. Finally three numerical examples are given to demonstrate the effectiveness of the proposed results  相似文献   

14.
This correspondence provides stochastic exponential stability for Markovian jumping bidirectional associative memory neural networks with time-varying delays. An approach combining the Lyapunov functional with linear matrix inequality is taken to study the problems. Some criteria for the stochastic exponential stability are derived. The results obtained in this correspondence are less conservative, less restrictive, and more computationally efficient than the ones reported so far in the literature.  相似文献   

15.
In this paper, the problems of global dissipativity and global exponential dissipativity are investigated for discrete-time stochastic neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing stochastic analysis technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequalities (LMIs). Furthermore, when the parameter uncertainties appear in the discrete-time stochastic neural networks with time-varying delays, the delay-dependent robust dissipativity criteria are also presented. Two examples are given to show the effectiveness and less conservatism of the proposed criteria.  相似文献   

16.
This paper deals with the delay-dependent asymptotic stability analysis problem for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying interval delays and Markovian jumping parameters by Takagi–Sugeno (T–S) fuzzy model. The nonlinear delayed BAM neural networks are first established as a modified T–S fuzzy model in which the consequent parts are composed of a set of Markovian jumping BAM neural networks with time-varying interval delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite-state space. The new type of Markovian jumping matrices Pk and Qk are introduced in this paper. The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A new delay-dependent stability condition is derived in terms of linear matrix inequality by constructing a new Lyapunov–Krasovskii functional and introducing some free-weighting matrices. Numerical examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

17.
In this paper, the master‐slave synchronization for coupled neural networks with Markovian jumping topology and stochastic perturbation is discussed. Based on a graph theory, the ergodic property of the Markovian chain, and the strong law of the large numbers for local martingales, several sufficient conditions are established to ensure the almost sure exponential synchronization or asymptotic synchronization in mean square for coupled neural networks with Markovian jumping topology. By the pinning control method, the chaotic synchronization between the master system and the slave systems with stochastic disturbance is achieved. The effectiveness of the results is finally illustrated by a numerical example.  相似文献   

18.
In this paper, we study the impulsive stochastic Cohen–Grossberg neural networks with mixed delays. By establishing an L-operator differential inequality with mixed delays and using the properties of M-cone and stochastic analysis technique, we obtain some sufficient conditions ensuring the exponential p-stability of the impulsive stochastic Cohen–Grossberg neural networks with mixed delays. These results generalize a few previous known results and remove some restrictions on the neural networks. Two examples are also discussed to illustrate the efficiency of the obtained results.  相似文献   

19.
The problem of delay-dependent stability analysis is investigated for discrete-time Markovian jump neural networks with mixed time-delays (both discrete and infinity-distributed time delays). The Markov chain in the underlying neural networks is finite piecewise homogeneous. A delay-dependent condition is derived for the addressed neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same type of neural networks but with partially known transition probabilities. Two numerical examples are given to demonstrate the usefulness of the derived methods.  相似文献   

20.
In this paper, the stability analysis problem is investigated for stochastic bi-directional associative memory (BAM) neural networks with Markovian jumping parameters and mixed time delays. Both the global asymptotic stability and global exponential stability are dealt with. The mixed time delays consist of both the discrete delays and the distributed delays. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, we employ the Lyapunov–Krasovskii stability theory and the Itô differential rule to establish sufficient conditions for the delayed BAM networks to be stochastically globally exponentially stable and stochastically globally asymptotically stable, respectively. These conditions are expressed in terms of the feasibility to a set of linear matrix inequalities (LMIs). Therefore, the global stability of the delayed BAM with Markovian jumping parameters can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. A simple example is exploited to show the usefulness of the derived LMI-based stability conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号