首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The failure characteristic of graphite polyetheretherketone (Gr/PEEK) under compression with a centrally located circular discontinuity was investigated through experimentation and a nonlinear ply-by-ply finite element technique. The stacking sequence of the laminates investigated were: [0 °16], [90 °16], [±45 °]4S [0 °/90 °]4S, and [0 °/ ± 45 0°/90 °]2S. In the experimentation, [90 °]16, [0 °/90 °]4S, and [0 °/ ±45 °/90 °]2S laminates, as well as three of the [0 °]16, failed due to a crack that was normal to the loading direction and initiated from the edge of the hole progressing to the outer edges of the specimen. The [±45 °]4S specimens failed to support the load due to an internal crack that originated from the hole's edge and then traveled at an angle of about 42% to the direction of loading. The finite element method used to analytically model the failure of Gr/PEEK accurately modeled the response of the specimens tested experimentally.  相似文献   

2.
复合材料开孔层板压缩渐进损伤试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究碳纤维增强树脂基复合材料开孔层板在压缩加载过程中的损伤起始、演化方式和损伤特点,采用微距拍摄、逐级加载超声C扫描、X光扫描和扫描电子显微镜观测4种观测手段对国产CCF300/5228A[45/0/-45/90]4s、[452/02/-452/902]2s、[454/04/-454/904]s3种铺层方式的开孔层板进行了压缩试验研究。对压缩载荷作用下开孔层板的损伤起始和损伤演化进行了观察和对比。对试验中观测到的纤维微屈曲、纤维挤出、孔边开裂和分层扩展等现象之间的关系进行了分析和说明。试验结果表明:压缩载荷下45°和90°铺层相邻位置为层板易分层位置,含45°和90°铺层相邻位置的开孔层板渐进损伤过程较为明显:开孔层板在压缩载荷下较早出现损伤,损伤的起始和演化缓解了孔边应力集中,促使压缩应变能在孔边逐步释放,推迟开孔层板压缩破坏的发生,提高层板压缩承载能力。研究结果可为材料结构损伤容限设计提供依据。  相似文献   

3.
A study of transverse ply cracking using a discrete element method   总被引:1,自引:0,他引:1  
We study the transverse cracking of the 90° ply in [0/90]S cross-ply laminates by means of a discrete element method. To model the 90° ply a two-dimensional triangular lattice of springs is constructed where nodes of the lattice model fibers, and springs with random breaking thresholds represent the disordered matrix material in between. The spring-lattice is coupled by interface springs to two rigid bars which represent the two 0° plies in the model, which could be sublaminate as well. Molecular dynamics simulation is used to follow the time evolution of the model system. It was found that under gradual loading of the specimen, after some distributed cracking, segmentation cracks occur in the 90° ply which then develop into a saturated state where the ply cannot support additional load. The stress distribution between two neighboring segmentation cracks was determined, furthermore, the dependence of the microstructure of damage on the ply thickness was also studied. To give a quantitative characterization of stiffness degradation, the Young modulus of the system is monitored as a function of the density of segmentation cracks. The results of the simulations are in satisfactory agreement with experimental findings and with the results of analytic calculations.  相似文献   

4.
The results of a systematic study of the effects of microstructure on the mechanisms of fatigue damage in a symmetric eight ply [0/90]2s Ti---15Al---3Cr---3Al---3Sn/SiC (SCS6) composite are presented. Damage mechanisms are elucidated using optical/scanning electron microscopy and acoustic emission techniques. Damage initiation under cyclic loading is shown to occur early in life, and is dominated by longitudinal and transverse interfacial cracking. Subsequent damage occurs by matrix and fiber cracking, slip band formation and crack coalescence prior to the onset of catastrophic failure. However, the sequence of the damage is sensitive to changes in the metastable β matrix and interfacial microstructure. Based on the experimental evidence, a micromechanics model is developed for the prediction of fatigue life. This model involves the use of crack-tip shielding concepts in the assessment of crack bridging phenomena during fatigue crack growth.  相似文献   

5.
从宏、微观的角度研究了碳纤维增强聚酰亚胺树脂基MT300/KH420复合材料的高温力学性能,重点揭示了MT300/KH420复合材料[0°]14和[±45°/0°/90°/+45°/0°2]s层合板在常温~500℃的弯曲性能变化规律。研究表明:MT300/KH420复合材料高温力学性能优异,[0°]14层合板在420℃的弯曲强度保持在51%以上,弯曲模量在500℃以内变化很小。[0°]14层合板在常温下断口粗糙,且贯穿厚度,表现为脆性破坏;随温度升高,树脂流动性增强,呈现出黏弹效应,破坏逐渐集中在加载点处,在500℃,部分树脂热解,纤维束脱离基体并氧化。[±45°/0°/90°/+45°/0°2]s层合板高温弯曲性能较为稳定,主要破坏为上、下表面沿45°方向开裂,并伴有层间分离,在500℃出现严重分层破坏;相比于受基体控制的层合板弯曲性能,温度对受纤维控制的层合板弯曲性能影响较小。  相似文献   

6.
A damage-based model for post-fatigue notch strength is presented. The model is an extension of a method developed previously to predict the notch strength of laminated composites. A simple finite element representation of the notch tip damage zone is used to obtain the localized damage-modified stress distribution. A uniaxial tensile stress failure criterion is applied to the 0° plies from which the laminate strength is evaluated. In conjunction with the fatigue damage growth law described in Part II, residual strength is calculated as a function of the applied loading conditions, specimen geometry and lay-up for (90/0)s, (90/0)2s and (902/02)s T300/914C carbon-fibre/epoxy laminates subjected to tension-tension fatigue cycling.  相似文献   

7.
Stiffness reduction due to matrix cracking in a (0/90)s glass fibre reinforced plastic (GFRP) laminate has been studied under both quasi-static and fatigue loading. The stiffness reduction is shown to be directly proportional to the density of cracks which accumulate in the transverse ply. A model for the transverse ply crack growth during fatigue gives good agreement with the experimentally determined stiffness reduction curves.  相似文献   

8.
探索了一种新型竹质工程构件--瓦楞型竹束单板复合材料(CBLC)的制备工艺, 研究了三种典型铺装类型(Ⅰ型: (0°)6; Ⅱ型: (0°/90°)3; Ⅲ型: (90°)6)对其拉伸、 双向弯曲、 三维压缩性能的影响, 同时利用数字散斑相关方法(DSCM)对其弯曲应变场信息进行了表征。结果表明: 铺装类型对各项力学性能有明显影响, 对于拉伸、 纵向弯曲性能, Ⅰ型> Ⅱ型> Ⅲ型, 对于横向弯曲, Ⅱ型> Ⅲ型> Ⅰ型。不同铺装类型下CBLC的拉伸断裂机制亦各不相同: Ⅰ型为延性断裂, Ⅱ型为逐渐分层断裂, Ⅲ型为脆性断裂。 x和y方向应变场集中分布在试样底端最外层瓦楞波形连接处, 且Exx< Eyy。多重比较分析表明: 抗压缩性能在三维方向上存在明显差异, 且y>x>z; 铺装类型对CBLC的抗压载荷、 抗压强度有很大影响, 而抗压模量差异不明显。  相似文献   

9.
The effect of the matrix resin on the onset and growth of delamination in composite laminates has been investigated in this work. Two kinds of graphite/epoxy composite materials (T300/648-BF3/MEA and T300/634-DDS) with quite different matrix properties have been used. The study was done on two different layups, [(±30)3/902]s and [(±45)2/O2/902]s. Out-of-plane moiré interferometry and diiodomethane-enhanced X-radiography were used to detect delamination. A strength criterion for the onset of delaminatoin is proposed and an assessment made of the effect of matrix properties on delamination onset. A modified energy release rate model is presented for characterization of delamination growth emphasis being placed on assessing the behavior of delamination resistance curves and delamination growth rate. The results indicate that enhancement of matrix strength and ductility increases the critical loads for delamination onset and delamination resistance in the composite laminates under static loading, and significantly reduces the delamination growth rate under cyclic loading.  相似文献   

10.
朱坚  金城 《复合材料学报》1993,10(4):115-122,96
本研究用真空热压法制备了两种铺层的C/AI正交层板(0/90/0)s及(90/0/90)s.在MTS NEW810上进行了一系列疲劳损伤及破坏试验.疲劳损伤的行为研究工作包括:以刚度下降为损伤参数对C/AI正交层板进行了降级应力分析,并由此来预计在△Sh以下,正交层板不会发生疲劳损伤累积.研究了C/Al正交层板在同一应力水平而不同应力范围作用下的疲劳响应,发现试样在疲劳损伤时其刚度下降值相近似,即疲劳破坏的门槛值依赖于所施加的应力水平.依据MMC对各种循环载荷的不同响应,基体的疲劳损伤状态在S-N平面上可分为三种不同的区域:无损伤区,损伤累积区和断裂区.利用扫描电镜及金相显微镜分别对其疲劳断口形貌、基体裂纹进行观察,对该正交层板的疲劳破坏行为进行分析及讨论.结果表明:C/Al正交层板的疲劳断口呈脆断型,其中主承力层(0°铺层)断口平齐,偏轴层(90°铺层)断口平齐最差,层间损伤形式有局部分层、界面连续开裂及复合丝之间基体开裂等三种形式;其疲劳破坏主导因素是层间局部严重损伤及主承力层中复合丝大量断裂由于其疲劳裂纹沿垂直于载荷方向迅速扩展,寻找适中的界面结合强度对改善C/Al层板的疲劳性能有很大影响.  相似文献   

11.
The effect of fibre orientation and laminate stacking sequence on the tensile and fatigue behaviour of SCS-6/Ti 15-3 composites were investigated. The laminates used in this study were: (90)6, (0/ ± 45)s, (0/90)s, and (90/ +-45)s. The initiation and progression of microstructural damage at various stress levels was thoroughly characterized. It was found that fatigue life at high applied stresses were controlled by fibre fracture; progressive damage involving fibre fracture, interfacial debonding and matrix cracking became dominant at low applied stresses. Observation of the damage mechanisms in the angle-ply laminates under cyclic loading suggests that increasing the fibre-matrix bonding strength may improve the load carrying capability and fatigue life of laminates containing off-axis plies.  相似文献   

12.
13.
《Composites Part A》2007,38(4):1262-1269
Matrix cracks parallel to the fibres in the off-axis plies is the first intralaminar damage mode observed in laminated composites subjected to static or fatigue in-plane tensile loading. They reduce laminate stiffness and strength and trigger development of other damage modes, such as delaminations. This paper is concerned with theoretical modelling of unbalanced symmetric laminates with off-axis ply cracks. Closed-form analytical expressions are derived for Mode I, Mode II and the total strain energy release rates associated with off-axis ply cracking in [0/θ]s laminates. Stiffness reduction due to matrix cracking is also predicted analytically using the Equivalent Constraint Model (ECM) of the damaged laminate. Dependence of the degraded stiffness properties and strain energy release rates on the crack density and ply orientation angle is examined for glass/epoxy and carbon/epoxy laminates. Suitability of a mixed mode fracture criterion to predict the cracking onset strain is also discussed.  相似文献   

14.
使用热压罐制备[45/-45]4s、[0/90]4s和[0/45/-45/90]2s三种铺层方式的CFRP层合板,然后在室温下与Al胶接制备出单搭接试样。使用电子万能试验机、数字图像相关法(DIC)和扫描电子显微镜(SEM)等手段测量胶接接头的拉伸载荷-位移曲线和应变分布并观察断口形貌。基于试验数据分析不同铺层方式下CFRP-Al单搭接接头的拉伸性能,研究了铺层方式对CFRP-Al单搭接接头胶接性能的影响和铺层方式胶接接头的破坏机制。结果表明,在拉伸过程中[45/-45]4s试样出现塑性变形阶段其拉伸位移最大,而[0/45/-45/90]2s和[0/90]4s试样的拉伸位移较小且发生了脆性断裂。铺层方式从[45/-45]4s到[0/45/-45/90]2s再到[0/90]4s,试样的极限载荷和纤维束断裂数量增加、层间剪切力减小、应变集中程度和分层破坏程度降低。  相似文献   

15.
《Composites Part B》2002,33(6):471-478
Transverse cracking behavior in high temperature bismaleimide-based carbon fiber reinforced plastics (CFRP) laminates under fatigue loading was observed. Three types of cross-ply laminate, [0/902/0], [02/903/02] and [02/904/02], were tested to study the effect of ply thickness. Damage observation was conducted using two methods. Optical microscopy and soft X-ray radiography were used for edge and internal damage observation, respectively. Variational approach was used to derive the energy release rate associated with transverse cracking. Multiplication of transverse cracks was modeled based on modified Paris-law approach.  相似文献   

16.
Damage progression in laminated Overheight Compact Tension specimens was modeled using discrete representations of individual cracks and delaminations. Matrix cracking and delamination initiation, propagation, and interaction, without any prior knowledge and/or meshing of matrix cracking surfaces, is accomplished by combining stress and fracture mechanics-based constitutive modeling within a mesh independent crack-modeling framework. Simulation results including only matrix damage for specimens with [452/902/?452/02]s and [04/904]2s stacking sequences were compared with load–displacement curves and 3D X-ray micro computed tomography results from tested specimens. Excellent correlation was shown between the simulated and experimental load–displacement curves including statistical variations and proper representation of both the curve non-linearity and peak load. Similarly, a high level of correlation between simulated and experimental damage extent was shown. Additionally, a [45/90/?45/0]2s specimen exhibiting significant fiber fracture was modeled and results compared with experiment. Fiber fracture was simulated using a continuum damage mechanics approach in addition to the discrete cracking and delamination damage representations of matrix damage. The simulated load displacement curve and damage extent compared favorably with experimental results.  相似文献   

17.
An experimental study has been carried out to investigate both the static and dynamic bearing strengths of a pinned-joint carbon epoxy composite plate with [0°/45°/−45°/90°]S and [90°/45°/−45°/0°]S stacking configurations. The static and dynamic experiments have been carried out according to the ASTM D953 standards and ASTM STP 749, respectively [ASTM D 953-D, Standard Test method for Bearing Strength of Plastics, ASTM Designation. 342; Joining of Composite Materials, ASTM STP 749, American Society for Testing and Materials (1981) 131]. The ratio of the edge distance to the pin diameter (E/D), and that of the width to the pin diameter (W/D) of the specimens were varied to obtain the static bearing strength and the S–N fatigue curve. The experiments show that the static bearing strengths reach their upper limit when E/D and W/D ratios are equal to or greater than 4 for both [0°/45°/−45°/90°]S and [90°/45°/−45°/0°]S stacking sequences. The fatigue strength, on the other hand, reduces by up to 65% as E/D and W/D ratios increase for both stacking configurations.  相似文献   

18.
Fracture behavior of cross-ply (0/90)4s, (0/90)10s, (02/902)2s and (04/908/04)T laminates of T300/934 graphite/epoxy material was studied using compact tension specimens of several widths and thicknesses, center notched tension and three point bend specimens. The process of damage initiation and propagation was studied and is discussed in detail. The critical stress intensity factor was evaluated and its variation with specimen size and type is shown. On the basis of these investigations, a suitable specimen for the evaluation of meaningful fracture toughness is suggested.  相似文献   

19.
Experimental study of the response of laminated [(45/90/ — 45/0)6]s carbon/ epoxy virgin and pre-cracked composite beams to compressive cyclic loading is reported. The development of failure, in the form of delaminations, recorded continuously on video tape during the tests, revealed formation of delaminations close to the external faces of the beam. Some of the delaminations developed instantly and some propagated along the beam in jumps. Total failure occurred when the stress in the central ‘undamaged’ section of the beam reached a critical value. Calculation of the buckling load of unsymmetric laminated beams supports the experimental finding that a pre-crack close to the center of the specimen has no effect on the fatigue behavior of the beam. Prediction of time to first delamination crack, based on previous results, agree with the present experimental observation.  相似文献   

20.
This paper investigates the non-linear elastic behavior of unidirectional and cross-ply CFRP laminates and proposes a new method to measure tensile strain using Lamb waves. Young’s modulus was measured as a function of strain in situ using Lamb wave velocity during a tensile test. The stiffening effect of the carbon fibers on [0]8 specimens and the softening effect of the epoxy matrix on [90]8 specimens were accurately evaluated. Young’s modulus of the 0° ply was obtained as a quadratic function of strain. Using the function and the rule of mixture, the dependence of Young’s modulus on strain was accurately predicted for cross-ply laminates. Based on the results, the tensile strain was quantitatively correlated with the corresponding arrival time of the Lamb waves. The strains obtained from the proposed method agreed well with those from the strain gauge. Finally, the effect of transverse cracks on the in situ Young’s modulus of the cross-ply laminate under a tensile load was investigated. This method clearly detected even a small decrease in the Young’s modulus due to the transverse cracks in stiffening cross-ply laminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号