首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于啁啾光纤布拉格光栅的宽谱光单边带调制方法   总被引:1,自引:1,他引:0  
提出一种基于啁啾光纤布拉格光栅(CFBG)的宽谱光单边带(OSSB)调制实现方法。光双边带(ODSB)调制信号经过同一CFBG两个相反方向的反射,利用偏振控制器(PC)实现两个方向偏振态的正交。这种双反射CFBG(DR-CFBG)结构可以滤出光载波与其中一个边带实现OSSB调制,同时消除了反射谱内的色散,避免了滤波引起的相位畸变。利用实验制作的线性CFBG搭建了DR-CFBG,实验数据仿真结果表明,本文方法可以实现宽谱基带信号与加载数据信息射频信号的OSSB调制,结果表明传输距离大于6km时,40Gb/s NRZ信号OSSB调制传输有明显优势;加载2.5Gb/s的NRZ信号,OSSB调制传输50km,误码率为10-9时,20GHz射频为载波的功率代价比10GHz低3dB,比40GHz低1.2dB。改进CFBG的边沿斜率可以更好地抑制边带残留,提高OSSB调制信号的传输性能。  相似文献   

2.
A technique to separate the phase-induced penalty of a cascade of optical filters into dispersion, dispersion slope, and higher-order terms is introduced and its impact on the proper design and engineering of high-speed Dense Wavelength Division Multiplexed (WDM) optical systems and networks is demonstrated. As the currently deployed fiber optic systems and networks strive for higher speeds to respond to the growing global needs for more bandwidth, the impact of physical layer impairments (such as optical filter dispersion slope) which were not significant at lower speeds are now becoming increasingly important and worth looking at. In this article we demonstrate that at speeds of 40 Gbps and beyond, where the next generation systems will be operating, optical filter dispersion slope is at least as important as filter dispersion. As a result, separating the above contributions and accounting for each using the described modeling technique proves to be an effective way for designing and engineering such systems.  相似文献   

3.
一种基于OPM和FBG滤波器的新型双工ROF系统   总被引:1,自引:1,他引:0  
提出了一种采用光相位调制器(OPM)和光纤布 拉格光栅(FBG)滤波器实现的双向光纤无线通信(ROF)系统。在中心站,系统采用OPM和FBG滤波器产生抑制一阶边带的多边带光信号 ,而2.5Gbit/s 的下行链路信号只调制在中心光载波上同时经过光纤进行传输。在基站,未被调制的边带信 号用来重新调 制上行链路信号。建立了产生光载毫米波的理论模型,分析了光纤色散导致的相位影响,并 通过仿真实验 验证了系统的可行性。结果显示,经过60km光纤传输后,上、下行 链路信号的眼图都清晰可见,上行链 路功率代价小于0.2dB,下行链路功率代价小于1.8dB,系统具有较好的抗色散能力。  相似文献   

4.
The assessment of the power penalty of optically preamplified receivers with signal-dependent noise (SDN) dominance is often accomplished by neglecting the influence of the optical filtering of the amplified spontaneous emission (ASE) noise on the signal-ASE beat noise. In this paper, it is shown that the optical filtering of the ASE noise can have a strong impact on the signal-ASE beat noise and remarkably affect the power penalty, even for optical filter bandwidths five times wider than the signal bandwidth. A simple expression to analytically evaluate the power penalty due to optical filtering, which describes reasonably well the influence of the optical filter on the signal-ASE beat noise variance, is proposed. The accuracy of the new expression is investigated, in the case of assessment of the optical filter detuning impact on receiver performance and the case of optical filter bandwidth optimization, and its predictions are satisfactory in comparison with rigorous estimates. Two new expressions of power penalty due to extinction ratio and to eye closure are also presented. It is shown that the power penalty due to eye closure depends on the extinction ratio and vice versa. Our results show also that the power penalty due to eye closure is remarkably dependent on the eye closure asymmetry  相似文献   

5.
We measure the in-band dispersion penalty in a cascade of five 50-GHz low-dispersion linear-phase fiber Bragg gratings (FBGs) and compare the results with conventional apodised FBGs. At the 0.5-dB power penalty level, the usable bandwidth of a single linear-phase FBG (40 GHz) is twice as wide as that of a conventional apodised FBG (19 GHz). The bandwidth-utilization factor of a single linear-dispersion grating is 89%, while for the five-grating cascade, it is 76%. To our knowledge, these are the highest values reported to date for cascaded optical devices. The corresponding factors for the conventional gratings are 53% and 31%. We also measure the additional penalty on a dropped channel caused by a cascade of five adjacent-channel gratings. The bandwidth narrowing due to the adjacent-channel FBGs is 6 GHz both for linear-phase and conventional FBGs, giving a usable bandwidth of 34 GHz (linear-phase) and 13 GHz (conventional).  相似文献   

6.
We present a novel dispersion equalizer design for the compensation of chromatic dispersion and chromatic dispersion slope in WDM systems. The device is based on a cascade of complex quasi-periodic chirped fiber Bragg gratings. We show that the use of a low chirp results in the distribution of the resonating cavities along the optical fiber length, which allows reconfiguration of the spectral characteristics by the application of a temperature profile. This paper exposes in detail the numerical techniques used in the optimization of the fiber Bragg grating filters taking into account fabrication imperfections. We present a specific design for a 32-channel dispersion equalizer for 10 Gbit/s and a 50-GHz channel spacing. We examine the spectral characterization of a device fabricated using a phase-apodized mask for various settings of the chromatic dispersion profile. We demonstrate a tuning range of $pm {800}~{rm ps}/{rm nm}$ over a bandwidth of 30 GHz. On average, the standard deviation of the phase ripple was below 0.1 rad. Finally, we evaluate the performance of this device by bit error rate measurements.   相似文献   

7.
Dispersion management is critical for next-generation high-bandwidth-utilization fiber-optical networks. Square-top thin-film bandpass filters for 50-GHz dense wavelength-division multiplexing inherently have high chromatic dispersion (CD) in transmission. The imparted dispersion power penalty on the network is undesirable. However, a second thin-film filter, operating in reflection, can be designed to compensate the CD of the bandpass filter. In this paper we demonstrate experimentally the reduction of the intrinsic CD of a 50-GHz thin-film coupler from /spl plusmn/170 ps/nm to /spl plusmn/50 ps/nm over a 30-GHz passband, through the use of such a cascaded thin-film compensator. Network simulations based on filter performance confirm the reduced dispersion power penalty of the cascade over the individual filter.  相似文献   

8.
An actively mode-locked laser (MLLD) integrated with a distributed Bragg reflector (DBR) was used as a light source for optical subcarrier transmission. The millimeter (mm)-wave power penalty due to fiber dispersion is suppressed within 4 dB by operating this laser in a symmetric four-mode configuration. The experimental results agree well with the calculation of dispersion-induced penalty for a four-component-lightwave source. Optical subcarrier transmission free from dispersion-induced penalty within experimental error is achieved by further suppression of the end-modes of the DBR-MLLD using a fiber Bragg grating (FBG)  相似文献   

9.
We report on experimental investigations of real-time maximum-likelihood sequence estimation (MLSE) in the presence of narrowband optical filtering, using 10.7-Gb/s nonreturn-to-zero ON-OFF keying and a fiber grating filter with 6.25-GHz bandwidth. Compared to standard threshold detection, the MLSE eliminates a 10-3 error floor due to narrowband optical filtering and results in DFB a <2-dB optical signal-to-noise ratio penalty at a 10-3 bit-error ratio. Furthermore, we demonstrate the ability of the MLSE to simultaneously compensate for narrowband optical filtering and chromatic dispersion. Finally, we investigate the influence of narrowband filter frequency detuning and show that the well-known effect of increased filtering tolerance given by the vestigial sideband effect observed in standard threshold detection, disappears in the presence of the MLSE.  相似文献   

10.
This paper reports an integrated-optic dispersion slope (third-order dispersion) equalizer for dispersion shifted fiber which employs a lattice-form programmable optical filter on a planar lightwave circuit (PLC). This dispersion slope equalizer consists of nine symmetrical interferometers interleaved with eight asymmetrical interferometers. The performance of the equalizer is evaluated numerically. We confirm experimentally that this equalizer is effective in reducing the pulse waveform deterioration caused by the dispersion slope. In addition, the equalizer improves the power penalty of a 200-Gb/s, 100-km, time-division multiplexed optical transmission experiment  相似文献   

11.
A concise method is presented for rigorously calculating the power penalty due to the combined implications of the amplitude and phase response ripples of a dispersion compensating fiber Bragg grating and the chirp of the transmitted optical signal. By using trigonometric series to represent the ripples, the calculated penalty can be positive or negative, as obtained in numerical simulations and measurements, depending on the signal chirp and ripple within the modulated signal bandwidth. An approximate upper bound on the power penalty is also presented as an extension of earlier results that always yield positive penalties. Calculated and measured results are compared for two 10-Gb/s return-to-zero (RZ) signals with distinct chirp properties.  相似文献   

12.
Several types of ASK multiport homodyne receivers are investigated, and the impact of the phase noise and of the shot noise on these receivers is analyzed. The simplest structure is the conventional multiport receiver with a matched filter in each branch. This structure can tolerateDeltavT[deltavis the laser finewidth andTis the bit duration) of several percent with a small power penalty (3.6 percent for 1-dB penalty and 5.2 percent for 2-dB penalty). Optimization of branch filters of conventional multiport receivers does not help when the linewidth (and the penalty) is small but does improve the receiver performance for larger linewidths. The most important point of the paper is the novel wide-band filter-rectifier-narrow-band filter (WIRNA) structure, proposed and investigated here for the first time for optical communication systems. It is shown that the optimized WIRNA homodyne receivers are extremely robust with respect to the phase noise: the WIRNA tolerable value ofDeltavTis 3.6 percent for 1-dB penalty and more than 50 percent for 2-dB penalty. Thus, the WIRNA structure opens, for the first time, the possibility of constructing homodyne receivers operating at several hundred megabits per second with conventional DFB lasers without complicated external cavities. Under no-phase-noise conditions, all the multiport receivers investigated here have the same performance, which is identical to that of heterodyne ASK receivers. In addition, the optimized WIRNA receivers can tolerate tapproximately) the same laser linewidth as the heterodyne ASK receivers. Thus, the main difference between the WIRNA multiport homodyne and heterodyne receivers is that the former shifts the processing to a lower frequency range, in return for a more complicated implementation. This difference makes the WIRNA multiport homodyne receivers particularly attractive at high (say, several gigabit per second) bit rates.  相似文献   

13.
Wavelength-tunable optical filters, in the form of resonant distributed Bragg reflector laser filters, have been fabricated and evaluated. The devices are specially designed as transmission filters and have a novel structure, using low coupling strength in the grating and an up-tapered active section, in order to improve the crosstalk performance and the saturation properties. Fabricated devices have 6-8-dB dynamic range and would give less than 1-dB crosstalk penalty in four-channel systems at 13-dB chip gain. System experiments with two 2-Gb/s channels are reported  相似文献   

14.
In this paper, we investigate experimentally and via simulation the pros and cons of a narrow filter receiver for differential quadrature phase-shift keying based on a single optical filter and eschewing the conventional asymmetrical Mach-Zehnder interferometer structure. We quantify the performance differences between the two receivers, allowing system designers and operators to determine when the less complex narrow filter receiver might be the appropriate choice. We numerically optimize the 3-dB bandwidth and center frequency of the narrow filter and show it is more robust to carrier frequency detuning than the conventional solution. We show that the narrow filter receiver is more tolerant to chromatic dispersion (CD) than the conventional one, and equally tolerant to first-order polarization-mode dispersion. We show the impact of the 3-dB bandwidth on the receiver performance when CD accumulates. Finally, we show via experiments and simulations that the 3 dB advantage of the conventional receiver vanishes when the nonlinear impairments are fiber nonlinearities; comparing the two receivers at the optimum launch power for a 25 times 80 km system, the difference in optical SNR margin is reduced to ~1.6 dB. Experiments are conducted at 42 Gb/s using a commercially available narrow filter for reception.  相似文献   

15.
Bragg grating transmission filters were fabricated on ZnMgSSe-ZnSSe-ZnMgSSe planar optical waveguide structures using a high resolution electron-beam lithographic process. Varying the grating geometry, the filter characteristics like resonance wavelength, modulation contrast, and stopband width can be adjusted. For example, for a L=600-μm-long grating with a period of Λ=120 nm, we achieve 16% residual transmission and a spectral width of 4 Å for the designed resonance wavelength of 603 mm. The experimental data can be explained quantitatively with a transfer matrix calculation assuming a coupling coefficient of 40 cm-1  相似文献   

16.
文章提出一种在光纤光栅自身热膨胀效应产生啁啾的基础上,利用铝片热膨胀系数比较高的特点产生应力来增强光纤光栅啁啾,从而实现了宽带、大范围色散调谐的新型光纤光栅色散补偿器。该色散补偿器能够分别对群速度色散及中心波长独立调谐。实验结果表明,在中心波长为1 551.25nm处,能够实现>1.5nm的色散补偿带宽,-350~-690ps/nm的群时延色散调谐范围;在色散为-660ps/nm情况下,能够实现中心波长1nm的偏移。  相似文献   

17.
We review the principle of operation and characteristics of all-fiber devices for dispersion compensation based on chirped distributed resonant coupling. These devices are the chirped Bragg grating, the chirped intermodal coupler, and the tapered two-dissimilar-core fiber. We discuss the use of a figure of merit to characterize equalizing filters. Based on a specific example, filter responses are computed and their performance is evaluated with a numerical simulation of an optical fiber link. Finally, design constraints are discussed  相似文献   

18.
分析了啁啾光纤光栅对光脉冲信号的作用 ,计算光脉冲经过一定距离传输并由啁啾光纤光栅进行色散补偿后的脉冲展宽情况 ,同时分析啁啾光纤光栅群时延抖动对系统色散代价的影响。在系统色散功率代价一般要小于1dB的条件限制下给出啁啾光纤光栅群时延抖动的幅度、周期与系统单信道速率这三个参量之间存在相互关系  相似文献   

19.
We experimentally demonstrate dynamic dispersion compensation using a novel nonlinearly chirped fiber Bragg grating in a 10-Gb/s system. A single piezoelectric transducer continuously tunes the induced dispersion from 300 to 1000 ps/nm. The system achieves a bit-error rate=10-9 after both 50 and 104 km of single-mode fiber by dynamically tuning the dispersion of the grating between 500 and 1000 ps/nm, respectively. The power penalty after 104 km is reduced from 3.5 to <1 dB  相似文献   

20.
We show that a fiber Bragg grating filter improves the bit-error-rate (BER) performance of a semiconductor-optical-amplifier for return-to-zero (RZ) wavelength conversion. A 14-dB reduction in power penalty was obtained at 10.6 Gb/s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号