首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

2.
The effect of the growth temperature and Mg/(Mg+Zn) molar flow rate ratio of metal organic sources on the crystalline structure of Zn1−xMgxO (ZMO) films is investigated in thin films prepared by metal organic chemical vapor deposition (MOCVD) process on fused silica in order to obtain the wide-bandgap ZMO films with single wurtzite structure, which is very important to achieve high-efficiency chalcopyrite solar cells. Based on the measurements and analysis of the fabricated samples, the ZMO films with the controllable bandgap from 3.3 to 3.72 eV can exhibit a single wurtzite phase depending on the growth temperature and Mg content. Furthermore, the resistivity of ZMO films is comparable to that of ZnO film. It is a good indication that ZMO film is superior to CdS or ZnO films as buffer and window layers mainly due to its controllable bandgap energy and safety. As a result, the solar cells with ZMO buffer were fabricated without any surface treatment of Cu(InGa)(SSe)2 (CIGSSe) absorber or antireflection coating, and the efficiency of 10.24% was obtained.  相似文献   

3.
A simple method was developed to fabricate tungsten oxide (WO3−x) nanowires based electrochromic devices. The WO3−x nanowires are grown directly from tungsten oxide powders in a tube furnace. The WO3−x nanowires have diameters ranging from 30 to 70 nm and lengths up to several micrometers. The WO3−x nanowires based device has short bleach-coloration transition time and can be grown on a large scale directly onto an ITO-coated glass that makes it potential in many electrochromic applications. The structure, morphology, and composition of the WO3−x nanowires were characterized using the scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometer. The optical and electrochromic performance of the nanowires layer under lithium intercalation was studied in detail by UV–VIS–NIR spectroscope and cyclic voltameter.  相似文献   

4.
The temperature dependence of the exciton ground state, lowest and binding energies in cylindrical quantum dot (QD) are theoretically investigated using a variational procedure within the effective mass approximation. The interaction between the charge carriers (electron and hole) and longitudinal optical (LO) phonon modes is taken into account. The excitonic confinement is described by a finite depth potential well. Specific applications of these results are given for CdTe QDs embedded in a CdTe/Cd1-xZnxTe matrix. The total and lowest energies depend strongly on the temperature, up to a critical value of temperature T (around 40 °K), increasing with it. In the small dot sizes region, both energies decrease rapidly with increasing dot radius and approach the quantum well limit energies for large radius. In addition, an enhancement of the Zn fraction in the barrier material increases both the total and binding energies of the exciton. It is found that the exciton binding energy is significantly reduced with increasing temperature and its effect is more important on the ground state energy than on the binding energy. Moreover the exciton is stable even at room temperature. The LO-phonon contribution to the exciton binding energy is important and depends on the dot size, the Zn fraction and the temperature.  相似文献   

5.
The electrodeposition of Zn1−xCdxSe polycrystalline semiconducting thin films from aqueous acidic bath without any additives onto tin oxide-coated conducting glass and titanium substrates are described. The influence of deposition parameters on the film formation and deposition mechanism based on cyclic voltammetry is discussed. X-ray diffraction studies showed the polycrystalline wurtzite nature for all the films deposited under the proposed conditions. The optical studies revealed the band gap values in the range between 2.82 and 1.72 eV as the film composition changes from ZnSe to CdSe. It has been observed that the concentration of cadmium salt plays an essential role on the alloy formation. The surface morphological studies and composition analysis were carried out and the results are discussed.  相似文献   

6.
7.
Thin film solar cells with chalcopyrite CuInSe2/Cu(InGa)Se2 (CIS/CIGS) absorber layers have attracted significant research interest as an important light-to-electricity converter with widespread commercialization prospects. When compared to the ternary CIS, the quaternary CIGS has more desirable optical band gap and has been found to be the most efficient among all the CIS-based derivatives. Amid various fabrication methods available for the absorber layer, electrodeposition may be the most effective alternative to the expensive vacuum based techniques. This paper reviewed the developments in the area of electrodeposition for the fabrication of the CIGS absorber layer. The difficulties in incorporating the optimum amount of Ga in the film and the likely mechanism behind the deposition were highlighted. The role of deposition parameters was discussed along with the phase and microstructure variation of an as-electrodeposited CIGS layer from a typical acid bath. Related novel strategies such as individual In, Ga and their binary alloy deposition for applications in CIGS solar cells were briefed.  相似文献   

8.
Annealed Zn1−xMgxO/Cu(In,Ga)Se2 (CIGS) interfaces have been characterized by ultraviolet light excited time-resolved photoluminescence (TRPL). The TRPL lifetime of the Zn1−xMgxO/CIGS film increased on increasing the annealing temperature to 250 °C, whereas the TRPL lifetime of the CdS/CIGS film had little change by annealing at temperatures lower than 200 °C. This is attributed to the recovery of physical damages by annealing, induced by sputtering of the Zn1−xMgxO film. The TRPL lifetime abruptly decreased with annealing at 300 °C. The diffusion of excess Zn from the Zn1−xMgxO film into the CIGS interface is clearly observed in secondary ion mass spectroscopy (SIMS) depth profiles. These results indicate that excess Zn at the vicinity of the CIGS surface acts as non-radiative centers at the interface. The TRPL lifetime of the Zn1−xMgxO/CIGS film annealed at 250 °C reached values to be comparable to that of the as-deposited CdS/CIGS film. Performance of the Zn1−xMgxO/CIGS cells varied with the annealing temperature in the same manner as the TRPL lifetime. The highest efficiency of the Zn1−xMgxO/CIGS solar cells was achieved for annealing at 250 °C. The results of the TRPL lifetime on annealing show that the cell efficiency is strongly influenced by the Zn1−xMgxO/CIGS interface states related to the damages and diffusion of Zn.  相似文献   

9.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

10.
We report on PtxNi1−x (x = 0, 0.35, 0.44, 0.65, 0.75, and 0.93) nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3). The PtxNi1−x catalysts were prepared through a redox replacement reaction with a reverse microemulsion technique. The structure, morphology, and chemical composition of the obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) equipped with energy dispersive X-ray (EDX), and inductively coupled plasma emission spectroscopy (ICP). The results show that the diameters of the PtxNi1−x nanoparticles are about 2–4 nm, and the Pt atomic contents in the catalysts were 35%, 44%, 65%, 75%, and 93%, respectively. It is found that the catalytic activity toward the hydrolysis of NH3BH3 is correlated with the composition of the PtxNi1−x catalysts. The annealing of Pt0.65Ni0.35 at 300 °C for 1 h increases the crystallinity of the nanoparticles, but shows almost the same activity as that without annealing. Among the as-prepared PtxNi1−x nanoparticles, Pt0.65Ni0.35 displays the highest catalytic performance, delivering a high hydrogen-release rate of 4784.7 mL min−1 g−1 and a low activation energy of 39.0 kJ mol−1.  相似文献   

11.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

12.
A series of Cd1−xZnxS thin films were deposited onto indium-doped tin oxide (ITO) coated glass substrates by ultrasonic spray pyrolysis CdCl2, ZnCl2, and CS(NH2)2 aqueous solutions. The XRD patterns revealed that these films processed a wurtzite structure and a series of solid solutions of CdS and ZnS formed. The lattice constants decreased as the x value increased. From the transmittance and reflectance, the optical band gap was estimated to be between 2.45 eV and 3.72 eV, and the band gap increased as the x value increased according to a near linear relationship with the x value. The Mott-Schottky tests revealed that the flat potential shifted negatively as the x value increased. The photo responses agreed with the optical absorption of these films quite well. The current–potential measurements under chopped Xe lamp light irradiation show that the CdS deposited at 300 °C had best photoresponse. Its photoelectrochemical efficiency was estimated to be about 0.95% under 0.73 V bias from two electrodes current–potential tests.  相似文献   

13.
The structural, electronic and optical properties of cubic CdS1−xTex alloys, with Te-concentrations varying from 0% up to 100% are investigated. The calculations are based on the total-energy calculations using the full potential-linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) for the total-energy calculations, while for electronic properties in addition to that the Engel–Vosko (EV-GGA) formalism was also applied. The ground state properties for all Te-concentrations are presented. The optical dielectric constant is also determined for both the binary and their related ternary alloys.  相似文献   

14.
CdS/SnS and Cd1−xZnxS/SnS solar cells were fabricated. SnS films were deposited by the pulsed electrochemical deposition method using an aqueous solution containing SnSO4 and Na2S2O3. CdS and Cd1−xZnxS window layers were deposited by using the photochemical deposition method using an aqueous solution containing CdSO4, ZnSO4 and Na2S2O3. Both the techniques were simple, economical and advantageous for fabricating cheap solar cells. The fabricated cells showed rectification characteristics. The photovoltaic properties were measured under AM 1.5 illumination. The cells with the Cd1−xZnxS window layer show larger photocurrent than those with the CdS window layer.  相似文献   

15.
Perovskite-type La0.8Sr0.2ScyMn1−yO3−δ oxides (LSSMy, y = 0.0–0.2) were synthesized and investigated as cathodes for solid-oxide fuel cells (SOFCs) containing a stabilized zirconia electrolyte. The introduction of Sc3+ into the B-site of La0.8Sr0.2MnO3−δ (LSM) led to a decrease in the oxides’ thermal expansion coefficients and electrical conductivities. Among the various LSSMy oxides tested, LSSM0.05 possessed the smallest area-specific cathodic polarization resistance, as a result of the suppressive effect of Sc3+ on surface SrO segregation and the optimization of the concentration of surface oxygen vacancies. At 850 °C, it was only 0.094 Ω cm2 after a current passage of 400 mA cm−2 for 30 min, significantly lower than that of LSM (0.25 Ω cm2). An anode-supported cell with a LSSM0.05 cathode demonstrated a peak power density of 1300 mW cm−2 at 850 °C. The corresponding value for the cell with LSM cathode was 450 mW cm−2 under the same conditions. The LSSM0.05 oxide may potentially be a good cathode material for IT-SOFCs containing doped zirconia electrolytes.  相似文献   

16.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

17.
CdSe0.3Te0.7 alloy was prepared from the individual components and its composition and structural analysis were done. Films were prepared by hot wall deposition technique using 0.15 m length tube under a vacuum of 5×10−5 Torr on well cleaned glass substrates. The composition, structural, morphological, and optical properties of hot wall deposited films were investigated. The XRD analysis revealed that the films are like amorphous in nature for lower thicknesses but with increasing thickness a more preferred orientation along (1 0 1) direction was observed. The crystallite size (D), dislocation density (δ) and strain () were evaluated. From the EDX composition analysis, the individual concentrations of Se and Te in the films were estimated. An analysis of optical measurements shows that all the films have fairly good transparency above 850 nm. The optical band gap was found to be around 1.55 eV and decreases with increasing thickness. Also comparison of band gap with corresponding values for CdSe and CdTe are made.  相似文献   

18.
CdSxSe1−x films of different composition (0 < x < 1) were deposited by pulse plating technique at different duty cycles in the range of 10-50%. The films were polycrystalline and exhibited hexagonal structure. The band gap of the films varies from 1.68 to 2.39 eV as the concentration of CdS increases. Energy Dispersive analysis of X-rays (EDAX) measurements indicate that the composition of the films are nearly the same as that of the precursors considered for the deposition. Atomic force microscopy studies indicated that the grain size increased from 20 to 200 nm as the concentration of CdSe increased. Photoelectrochemical (PEC) cell studies indicated that the films of composition CdS0.9Se0.1 exhibited maximum photoactivity. Mott-Schottky studies indicated that the films exhibit n-type behaviour. Spectral response measurements indicated that the photocurrent maxima occurred at the wavelength value corresponding to the band gap of the films.  相似文献   

19.
An adjustment of a conduction band offset (CBO) of a window/absorber heterointerface is important for high efficiency Cu(In,Ga)Se2 (CIGS) solar cells. In this study, the heterointerface recombination was characterized by the reduction of the thickness of a CdS layer and the adjustment of a CBO value by a Zn1−xMgxO (ZMO) layer. In ZnO/CdS/CIGS solar cells, open-circuit voltage (Voc) and shunt resistance (Rsh) decreased with reducing the CdS thickness. In constant, significant reductions of Voc and Rsh were not observed in ZMO/CdS/CIGS solar cells. With decreasing the CdS thickness, the CBO of (ZnO or ZMO)/CIGS become dominant for recombination. Also, the dominant mechanisms of recombination of the CIGS solar cells are discussed by the estimation of an activation energy obtained from temperature-dependent current-voltage measurements.  相似文献   

20.
A stable, easily sintered perovskite oxide BaCe0.5Zr0.3Y0.16Zn0.04O3−δ (BCZYZn) as an electrolyte for protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode was investigated. The BCZYZn perovskite electrolyte synthesized by a modified Pechini method exhibited higher sinterability and reached 97.4% relative density at 1200 °C for 5 h in air, which is about 200 °C lower than that without Zn dopant. By fabricating thin membrane BCZYZn electrolyte (about 30 μm in thickness) on NiO–BCZYZn anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.00 V, a maximum power density of 236 mW cm−2, and a low polarization resistance of the electrodes of 0.17 Ω cm2 were achieved at 700 °C. This investigation indicated that proton conducting electrolyte BCZYZn with BSZF perovskite cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号