首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell receptor (TCR) vaccination in rats prevents the development of experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis. The mechanism of this potential immunotherapy was examined by vaccinating mice with an immunogenic peptide fragment of the variable region of the TCR V beta 8.2 gene. Another immunogen that usually induces an immune response mediated by V beta 8.2+ T cells was subsequently inhibited because specific clonal unresponsiveness (anergy) had been induced. Depletion of CD8+ cells before TCR peptide vaccination blocked such inhibition. Thus, the clonal anergy was dependent on CD8+ T cells, and such immunoregulatory T cells may participate in the normal course of EAE.  相似文献   

2.
T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1-9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide-specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.  相似文献   

3.
4.
In Lewis rats with experimental autoimmune encephalomyelitis (EAE) mediated by V beta 8.2 effector cells, anti-idiotypic T cells and antibodies could be boosted by injection of V beta 8.2 peptides, inducing both T cells and antibodies that reduced the severity and shortened the course of disease. However, EAE in Lewis rats is self-limiting, and we sought to determine if the anti-idiotypic response contributed to the natural recovery process. In a previous study, we found that adult tolerance induced to one of the regulatory idiotopes, V beta 8.2-44-54, caused worsening of EAE, implicating response to this epitope in recovery from EAE. However, neonatally-induced tolerance to V beta 8.2-44-54 did not alter the course of EAE, suggesting either compensation by additional V beta 8.2 determinants, or mechanistic differences in tolerization protocols. In this report, we reevaluate the role of V beta 8.2 determinants in recovery from EAE, using two recombinant V beta 8.2 constructs to induce neonatal tolerance to the comprehensive set of V beta 8.2 epitopes prior to adult induction of EAE. We found that neonatal exposure to either of the recombinant V beta 8.2 molecules induced "split" tolerance-specific T cell tolerance but enhanced antibody responses- and a more severe course of EAE. In contrast, neonatal exposure to a V beta 8.2 + T cell hybridoma or a control protein did not induce T cell tolerance to V beta 8.2 determinants and did not alter the EAE disease course. These results are consistent with those obtained by inducing adult tolerance, and suggest that our previous result (normal recovery from EAE in rats neonatally tolerized to V beta 8.2-44-54) was probably due to a compensatory response to other V beta 8.2 determinants. In both studies, the data clearly implicate T cell recognition of V beta 8.2 determinants in the natural EAE recovery process.  相似文献   

5.
The development of T cell-mediated autoimmune diseases hinges on the balance between effector and regulatory mechanisms. Using two transgenic mouse lines expressing identical myelin basic protein (MBP)-specific T cell receptor (TCR) genes, we have previously shown that mice bearing exclusively MBP-specific T cells (designated T/R-) spontaneously develop experimental autoimmune encephalomyelitis (EAE), whereas mice bearing MBP-specific T cells as well as other lymphocytes (designated T/R+) did not. Here we demonstrate that T/R- mice can be protected from EAE by the early transfer of total splenocytes or purified CD4(+) T cells from normal donors. Moreover, whereas T/R+ mice crossed with B cell-deficient, gamma/delta T cell-deficient, or major histocompatibility complex class I-deficient mice did not develop EAE spontaneously, T/R+ mice crossed with TCR-alpha and -beta knockout mice developed EAE with the same incidence and severity as T/R- mice. In addition, MBP-specific transgenic mice that lack only endogenous TCR-alpha chains developed EAE with high incidence but reduced severity. Surprisingly, two-thirds of MBP-specific transgenic mice lacking only endogenous TCR-beta chains also developed EAE, suggesting that in T/R+ mice, cells with high protective activity escape TCR-beta chain allelic exclusion. Our study identifies CD4(+) T cells bearing endogenous alpha and beta TCR chains as the lymphocytes that prevent spontaneous EAE in T/R+ mice.  相似文献   

6.
Autoimmune diseases can result from the breakdown of regulation and subsequent activation of self-antigenic determinant-reactive T cells. During the evolution of the autoimmune response to myelin basic protein (MBP) in B10.PL mice, several distinct T cell populations expand: the effectors mediating experimental autoimmune encephalomyelitis (EAE) are MBP-reactive, CD4+, and predominantly TCR Vbeta8.2+; in addition, at least two regulatory populations can be detected--one comprised of Vbeta14+ CD4 T cells, reactive to a framework region 3 determinant on the Vbeta8.2 chain, and a second that is CD8+ and reactive to another Vbeta8.2 determinant. The combined action of these two regulatory cell types controls disease-causing effectors, resulting in spontaneous recovery from disease. In this report, we reveal that the cytokine secretion pattern of TCR peptide-specific regulatory CD4 T cells can profoundly influence whether a type 1 or type 2 population predominates among MBP-specific CD4 effectors. The priming of type 1 regulatory T cells results in deviation of the Ag-specific effector T cell population in a type 2 direction and protection from disease. In contrast, induction of type 2 regulatory T cells results in exacerbation of EAE, poor recovery, and an increased frequency of type 1 effectors. Thus, the encephalitogenic potential of the MBP-reactive effector population is crucially and dominantly influenced by the cytokine secretion phenotype of regulatory CD4 T cells. These findings have important implications in understanding peripheral tolerance to self-Ags as well as in the design of TCR-based therapeutic approaches.  相似文献   

7.
The in vitro response of unprimed rat T cells to retroviral and bacterial superantigens (SAg) was analyzed with TCR V beta 8.2-, 8.5-, 10-, and 16-specific mAbs. Specific stimulation of V beta 8.2 and 8.5 CD4 cells was observed in the response to Mls1a, the retroviral SAg encoded by integrated provirus Mtv-7 (Mtv-7 SAg), which was presented by mouse B cells or mouse fibroblasts transfected with DR1 genes and the Mtv-7 SAg. Additionally, a strong response of V beta 16 CD4 cells to an as yet unidentified mouse SAg was found. Only some of the bacterial SAg known to stimulate mouse and human T cells also activated rat lymph node cells. SEA, SEE, and TSST-1 stimulated rat T cells well; SEB, SEC1, and SED did not. This defect was apparently a result of weak binding to rat MHC class II molecules because presentation by human MHC class II molecules restored T cell activation. Under these conditions, SEB stimulated V beta 8.2+ and 8.5+ CD4 and CD8 cells from Lewis rats. A comparison of several rat strains revealed an unresponsiveness to SEB or Mtv-7 SAg for V beta 8.2 cells from F344 and DA rats. Determination of the nucleotide sequences of the Tcrb-V8.2 of these strains revealed differences between SAg-responsive and SAg-unresponsive Tcrb-V8.2 in seven amino acids, four of them located in the putative SAg contact site. The significance of these findings for the evolution of TCR-SAg interactions is discussed.  相似文献   

8.
In this study we have analyzed the TCR V alpha and V beta regions at the DNA level in the CD4+CD45RO+ memory T cell population of synovial tissue infiltrating T lymphocytes of three rheumatoid arthritis (RA) patients and one patient with chronic arthritis. Cell lines of CD4+CD45RO+, CD4+CD45RO-, CD8+CD45RO+ and CD8+CD45RO- T lymphocyte populations were generated following FACS cell sorting of freshly isolated synovial tissue mononuclear cell infiltrates (STMC) and of freshly isolated peripheral blood mononuclear cells (PBMC) of these patients. The phenotypic and molecular analyses have revealed the following. (i) The TCR repertoires of tissue infiltrating T lymphocytes in the various subsets were extensive on the basis of TCR V gene family usage. (ii) Furthermore, each patient displayed individual specific TCR V gene expression patterns in the various STMC and PBMC derived T cell subsets. However, the majority of these arthritis patients manifested increased expression of multiple TCR V gene families in the synovial tissue derived CD4+CD45RO+ T cell population when compared with the peripheral blood derived CD4+CD45RO+ subset. Of these gene families, we found enhanced expression of the TCR V alpha 7 and V beta 11 gene segments in synovial tissue to be shared by all four patients analyzed. (iii) Nucleotide sequence analysis of the CDR3 regions of a number of TCR V regions in the CD4+CD45RO+ T cell subsets has revealed that the CDR3 regions comprised within synovial tissue derived TCR V regions differed from those found in peripheral blood derived TCR V regions. These differences in CDR3 diversity might be the consequence of a specific interaction with particular MHC-peptide complexes expressed at the site of inflammation. (iv) The CDR3 region analysis also showed individual specific amino acid motifs within the N-D-N regions of all analyzed TCR V beta genes derived from PBMC as well as STMC.  相似文献   

9.
The administration of soluble myelin proteins is an effective way of down-regulating the inflammation in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To shed more light on the mechanism of this antigen-specific therapy, we determined the effect of the intraperitoneal (i.p.) injection of soluble myelin basic protein (MBP) on Tcell apoptosis in the CNS and peripheral lymphoid organs of Lewis rats with EAE induced by inoculation with MBP and complete Freund's adjuvant. In particular we assessed the level of apoptosis of Vbeta8.2+ Tcells, which constitute the predominant encephalitogenic MBP-reactive T cell population in the Lewis rat. The daily i.p. injection of MBP for 3 days from the onset of neurological signs inhibited the further development of neurological signs of EAE. Using two-color flow cytometry we found that a single i.p. injection of MBP increased the level of apoptosis of the Vbeta8.2+ T cell population in the CNS to 26.2% compared to 7.4% in saline-treated rats and 7.6% in ovalbumin-treated rats. In contrast, treatment with MBP did not increase the level of apoptosis of the Vbeta8.2+ population in the popliteal lymph node draining the inoculation site (1.4%) or in the spleen (1.6%) above that occurring in saline-treated rats (1.6% and 1.1%, respectively). Limiting dilution analysis revealed that the frequency of T cells reactive to the major encephalitogenic epitope, MBP72-89, was decreased in the CNS but not in the popliteal lymph node by this treatment. Three-color flow cytometry in MBP-treated rats demonstrated that CNS Vbeta8.2+ T cells expressing Fas (CD95) and Fas ligand were highly vulnerable to apoptosis compared to Vbeta8.2+ Tcells not expressing these proteins. We conclude that the i.p. injection of MBP increases the spontaneously occurring Fas-mediated activation-induced apoptosis of autoreactive T cells in the CNS in EAE and that this contributes to the therapeutic effect of the injection.  相似文献   

10.
BACKGROUND & AIMS: Increase of T cells expressing CD4 and T-cell receptor (TCR) alpha- beta+ (beta[dim]) was observed in the mucosal and peripheral lymphoid tissues of TCR alpha-/- mice with inflammatory bowel disease (IBD). The aim of this study was to characterize the CD4+ TCR alpha-beta+ T cells. METHODS: Cytokine production, TCR V beta usage, and helper function for Peyer's patch B cells by the CD4+ TCR alpha-beta+ T cells were assessed. RESULTS: The CD4+ TCR alpha-beta+ T cells purified from mesenteric lymph nodes and lamina propria of the intestine of IBD mice exclusively produced interleukin 4, used selected subsets (V beta6, V beta8, V beta14, and V beta15) of TCR, and massively proliferated after stimulation with staphylococcal enterotoxin B. Addition of the CD4+ TCR alpha-beta+ T cells to Peyer's patch B-cell cultures markedly enhanced immunoglobulin (Ig) A, IgG, and IgM antibody responses. Furthermore, depletion of the TCR alpha-beta+ T cells with monoclonal antibody against TCR beta chain completely suppressed the onset of IBD and polyclonal B-cell activation in the TCR alpha-/- mice. CONCLUSIONS: These findings suggest the CD4+ TCR alpha-beta+ T cells-mediated development of IBD in TCR alpha-/- mice.  相似文献   

11.
The TCR confers immunity by the specific recognition of foreign Ag peptides in the context of self-MHC molecules. The mechanisms controlling TCR selection and repertoire generation are not clearly understood and seem to occur in an apparently random, (self) Ag-driven manner. To address the question to what extent the TCR repertoire is randomly shaped or genetically predetermined, we have analyzed the alpha beta TCR repertoire of the CD4+ and CD8+ subsets of peripheral blood lymphocyte cultures of monozygotic twins by using the polymerase chain reaction technique with TCR V region gene family-specific oligonucleotide primers. Our studies demonstrate that there is high concordance in the overall patterns of V gene usage within a pair of twins, particularly in V beta usage (mean V beta CD4+ R2 = 0.869 and CD8+ R2 = 0.833) and to a lesser extent V alpha usage (mean V alpha CD4+ R2 = 0.621 and CD8+ R2 = 0.627); whereas the patterns between unrelated individuals show more variability. This study has also demonstrated that the V alpha and V beta genes are not randomly used within the CD4+ and CD8+ subsets. We observed significant preferential skewing of several V alpha or V beta gene families to either the CD4+ or CD8+ subset in the majority of individuals analyzed (p-value range = 0.0476 to < 0.001). In particular, V alpha 11, 17, 22, and V beta 3, 9, 12, 18 were skewed to the CD4+ subset; whereas V alpha 2, 6, 12, 15, 20 and V beta 7, 14, 17 were skewed to the CD8+ subset. Furthermore, a number of the V genes showed patterns of skewing consistent only within a pair of twins. In three pairs of twins, V beta 2 was skewed to the CD4+ subset, whereas the fourth pair used almost equal frequencies of V beta 2 in both subsets. This observation was made for the V beta 2, 4, 5, 6, 8, 19 and V alpha 7, 16, 18, 21 families. Finally, the ratio of the relative V gene usage frequency that could be observed within an individual was conserved within the sets of twins; for instance, the relative amount of V beta 2 to that of V beta 3 was higher in both individuals of one set of twins, whereas it was lower in all of the other three sets. Together these observations suggest that the predominant influence shaping the TCR repertoire is genetically predetermined, of which, HLA-predicted selection mechanisms exerted during thymic maturation might be contributing factors.  相似文献   

12.
The observations in both mouse and rat models of experimental allergic encephalomyelitis (EAE) demonstrating restricted T-cell receptor (TCR) usage among pathogenic T cells has led to the generation of a new class of therapeutic vaccines composed of TCR V region peptides. Whether a similar approach will be of use in the treatment of human autoimmune disorders is still unclear. The experiments performed in our laboratory over the past several years have focused on two aspects of TCR peptide immunoregulation, namely, (1) how to identify the critical T-cell populations involved in the pathology of autoimmune disease, and (2) how to identify biologically relevant TCR peptides--those endogenous TCR peptides presented in association with MHC molecules on the surface of pathogenic T cells that are recognized by immunoregulatory T-cell populations. Results of our recently completed clinical studies regarding TCR V beta expression among CD4+ T cells in the cerebral spinal fluid (CSF) of patients with multiple sclerosis suggests that these cells may be an appropriate T-cell population to be targeted for TCR peptide therapy. In addition, our studies on the immune response to autologous, soluble TCR heterodimers may provide a strategy for the identification of new TCR peptide candidate vaccines.  相似文献   

13.
14.
The mechanisms by which T cells from previously unexposed hosts respond in vitro to certain intracellular pathogens remain to be fully understood. We report and characterize the in vitro reactivity to Toxoplasma gondii of human alpha beta T cells from T. gondii-seronegative individuals. Resting alpha beta T cells from these individuals proliferated in response to PBMC infected with T. gondii or pulsed with T. gondii lysate Ags. This was accompanied by an increase in the percentage of CD4+ alpha beta T cells. Purified CD4+ alpha beta T cells but not CD8+ alpha beta T cells proliferated in response to these T. gondii preparations. Both CD4+ alpha beta T cells with naive (CD45RA+) and memory (CD45RO+) phenotypes from adults as well as alpha beta T cells from T. gondii-seronegative newborns proliferated after incubation with T. gondii. This alpha beta T cell response to the parasite was inhibited by anti-HLA-DR mAb and to a lesser degree by anti-HLA-DQ mAb. Use of paraformaldehyde-fixed PBMC completely abrogated the proliferation of alpha beta T cells, indicating the need for processing of T. gondii Ags. Analysis of the TCR V beta expression did not show evidence for restriction in TCR V beta usage during T. gondii stimulation of alpha beta T cells. Alpha beta T cells secreted significant amounts of IFN-gamma after incubation with T. gondii-infected monocytes. This rapid and remarkable alpha beta T cell response may play an important role in the early events of the immune response to T. gondii.  相似文献   

15.
Immunization of Lewis (LEW) rats with guinea pig myelin basic protein (MBP) induces a population of encephalitogenic CD4 T cells having specificity for the dominant immunogenic peptide of MBP, 68-86. The TCR beta chains of these disease-causing T cells show three distinct features: they are almost exclusively Vbeta8.2, they use AspSer as the first two amino acid residues of the third complementarity-determining region (CDR3) and these junctional region sequences show few if any non-germline N-region nucleotide additions. This last feature raises the possibility that these autoimmune T cell precursors derive from TCR gene rearrangements occurring during early, perinatal ontogeny, a period when the enzyme terminal deoxynucleotidyl transferase (TdT), responsible for N region additions, is not expressed. An alternative possibility is that these features of the TCR of MBP 68-86-reactive T cells are dictated by considerations of antigen selection throughout ontogeny both in the thymus and in the periphery--ie., that such beta chains are conformationally the most appropriate for triggering by an epitope of 68-86 complexed to class II RT1.BI MHC molecules. We show here that active experimental allergic encephalomyelitis, while delayed in onset, occurs in heavily irradiated animals, but not in the absence of a thymus, a finding indicating that this autoimmune disease is caused by a T cell subpopulation derived from the post-irradiation adult thymus. These disease-causing T cells are heavily Vbeta8.2+, CDR3 AspSer+ and use few N region additions. We conclude that T cells with these TCR beta chain features can be generated in the adult thymus and most likely reflect requirements imposed by antigen selection.  相似文献   

16.
Induction of mucosal tolerance by inhalation of soluble peptides with defined T cell epitopes is receiving much attention as a means of specifically down-regulating pathogenic T cell reactivities in autoimmune and allergic disorders. Experimental autoimmune encephalomyelitis (EAE) induced in the Lewis rat by immunization with myelin basic protein (MBP) and Freund's adjuvant (CFA) is mediated by CD4+ T cells specific for the MBP amino acid sequences 68-86 and 87-99. To further define the principles of nasal tolerance induction, we generated three different MBP peptides (MBP 68-86, 87-99 and the non-encephalitogenic peptide 110-128), and evaluated whether their nasal administration on day -11, -10, -9, -8 and -7 prior to immunization with guinea pig MBP (gp-MBP) + CFA confers protection to Lewis rat EAE. Protection was achieved with the encephalitogenic peptides MBP 68-86 and 87-99, MBP 68-86 being more potent, but not with MBP 110-128. Neither MBP 68-86 nor 87-99 at doses used conferred complete protection to gp-MBP-induced EAE. In contrast, nasal administration of a mixture of MBP 68-86 and 87-99 completely blocked gp-MBP-induced EAE even at lower dosage compared to that being used for individual peptides. Rats tolerized with MBP 68-86 + 87-99 nasally showed decreased T cell responses to MBP reflected by lymphocyte proliferation and IFN-gamma ELISPOT assays. Rats tolerized with MBP 68-86 + 87-99 also had abrogated MBP-reactive IFN-gamma and tumor necrosis factor-alpha mRNA expression in lymph node cells compared to rats receiving MBP 110-128 nasally, while similar low levels of MBP-reactive transforming growth factor-beta and IL-4 mRNA expressing cells were observed in the two groups. Nasal administration of MBP 68-86 + 87-99 only slightly inhibited guinea pig spinal cord homogenate-induced EAE, and passive transfer of spleen mononuclear cells from MBP 68-86 + 87-99-tolerized rats did not protect na?ve rats from EAE. Finally, we show that nasal administration of MBP 68-86 + 87-99 can reverse ongoing EAE induced with gp-MBP, although higher doses are required compared to the dosage needed for prevention. In conclusion, nasal administration of encephalitogenic MBP peptides can induce antigen-specific T cell tolerance and confer incomplete protection to gp-MBP-induced EAE, and MBP 68-86 and 87-99 have synergistic effects. Non-regulatory mechanisms are proposed to be responsible for tolerance development after nasal peptide administration.  相似文献   

17.
We investigated T cell epitopes of guinea pig myelin basic protein (MBP) that induce experimental autoimmune encephalomyelitis (EAE) in DA rats, using synthetic peptides that correspond to regions of the guinea pig MBP molecule that are homologous to rat MBP. Four peptides were encephalitogenic when tested in DA rats. MBP63-81, which partially overlaps the dominant encephalitogenic MBP epitope for Lewis (LEW) rats, caused severe EAE in the DA strain but did not elicit EAE in LEW rats. MBP66-81 and MBP63-76 were also encephalitogenic for DA but not LEW rats. MBP79-99 also induced EAE in DA rats, although MBP87-99, the minor encephalitogenic LEW epitope, was inactive. This indicates that part of the 79-86 sequence is necessary for encephalitogenic activity in the DA strain. MBP101-120, and MBP142-167 were also encephalitogenic for DA rats. T cells from DA rats immunized with intact MBP proliferated in response to the whole protein and to MBP79-99, but were not stimulated to a significant extent by the other encephalitogenic peptides, suggesting that these may represent cryptic or subdominant epitopes. However, MBP63-81-specific T cell lines could be isolated by repeated restimulation with peptide, indicating that the peptide-specific T cells were present in DA rats at low frequency.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) serves as a rodent model of the autoimmune disease multiple sclerosis. In mice, EAE is induced by immunizing with spinal cord homogenate, components of the myelin sheath, such as myelin basic protein (MBP) or proteolipid protein (PLP), or peptides derived from these components. EAE can be induced in H-2u or (H-2u x H-2s)F1 mice with the N-terminal peptide of MBP, Ac1-11. Coimmunization with Ac1-11 and Ac1-11[4A], an analog in which lysine at position four is substituted with alanine, prevents EAE. The mechanism of inhibition has not been elucidated, but probably does not work through MHC blockade, T cell anergy or clonal elimination of encephalitogenic T cells. We have isolated T cell clones and hybridomas from (PL/J x SJL/J)F1 mice immunized with either Ac1-11 alone or Ac1-11 and Ac1-11[4A] and analysed these cells for differences in their T cell receptor repertoire and in vitro response. Although T cells elicited by coinjection of Ac1-11 and Ac1-11[4A] expressed TCR that used V alpha and Vbeta gene elements similar to those elicited by Ac1-11 alone, they differed in the sequences of the junctional region of the alpha chain. Most of these T cells also responded less well to Ac1-11 in vitro, suggesting that coinjection of Ac1-11 and Ac1-11[4A] preferentially activates T cells bearing TCR of different affinity for Ac1-11 bound to I-A(u), and which may therefore be less encephalitogenic. Furthermore, our results show that a more diverse repertoire of V alpha and Vbeta genes are elicited by Ac1-11 in (PL/J x SJL/J)F1 mice compared to PL/J and B10.PL mice, providing further evidence that a restricted TCR repertoire is not required for the development of autoimmune disease.  相似文献   

19.
A novel subset of peripheral T cells, peripheral NK T cells, is found to be a major population comprising 5% of splenic T and 40% of bone marrow T cells. The majority of peripheral NK T cells are characterized by the expression of an invariant TCR-alpha encoded by V alpha 14/J alpha 281 with a one nucleotide N region. Moreover, a specific reduction of V alpha 14+ NK T cells has been demonstrated to be tightly associated with various autoimmune diseases, indicating their decisive role in autoimmune disease development. In this study, we investigated the phenotypes of peripheral V alpha 14+ NK T cells and their TCR-beta repertoire. Peripheral V alpha 14+ NK T cells, comprise two populations, i.e., small and large sized cells, at an equal frequency, belonged to the CD4- CD8- fraction, and are heat stable antigen(bright), macrophage-1bright, B220bright, CD45RBdim, and Mel-14dim, but CD5-, distinct from thymic NK T cells. TCR-beta analysis clearly showed that peripheral V alpha 14+ NK T cells utilized two to three dominant invariant TCR-beta, such as V beta 8.2 D beta J beta 2.5/V beta 7 D beta J beta 2.1 in the spleen and liver, V beta 8.2 D beta J beta 2.5/V beta 8.3 D beta J beta 2.2/V beta 7 D beta J beta 2.6 in the bone marrow, and V beta 7 D beta J beta 2.1/V beta 3 D beta J beta 1.2 in intestinal intraepithelial lymphocytes. Judging from the unusual surface phenotypes, such as heat stable antigen, macrophage-1, B220, CD45RBdim, and Mel-14dim, which are known to be T cell activation markers, peripheral V alpha 14+ NK T cells may always be activated under physiologic conditions, resulting in the oligoclonal expansion of V alpha 14+ NK T cells with different invariant TCR-beta in different peripheral organs. The unique features of V alpha 14+ NK T cells are discussed.  相似文献   

20.
Effector functions of CD4-CD8- double negative (DN) alpha beta TCR+ cells were examined. Among mouse DN alpha beta TCR+ thymocytes, NK1.1+ cells expressing a canonical V alpha 14/J alpha 281 TCR but not NK1.1- cells produce IL-4 upon TCR cross-linking and IFN-gamma upon cross-linking of NK1.1 as well as TCR. Production of IL-4 but not IFN-gamma from DN alpha beta TCR+NK1.1+ cells was markedly suppressed by IL-2. Whereas V alpha 14/J alpha 281 TCR+ cells express NK1.1+, these cells are not the precursor of DN alpha beta TCR+NK1.1+CD16+B220+ large granular lymphocytes (LGL). IL-2 induces rapid proliferation and generation of NK1.1+ LGL from DN alpha beta TCR+NK1.1- but not from DN alpha beta TCR+NK1.1+ cells. LGL cells exhibit NK activity and produce IFN-gamma but not IL-4 upon cross-linking of surface TCR or NK1.1 molecules. In contrast to IL-2, IL-7 does not induce LGL cells or NK activity from DN alpha beta TCR+NK1.1- cells but induces the ability to produce high levels of IL-4 upon TCR cross-linking. Our results show that DN alpha beta TCR+ T cells have several distinct subpopulations, and that IL-2 and IL-7 differentially regulate the functions of DN alpha beta TCR+ T cells by inducing different types of effector cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号