共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects 总被引:2,自引:0,他引:2
A numerical study of the non-Newtonian behavior for a finite journal bearing lubricated with micropolar fluids is undertaken considering both thermal and cavitating effects. The modified Reynolds equation and energy equation are derived based on Eringen's micropolar fluid theory. The solution to the modified Reynolds equation is determined using the Elord's cavitation algorithm. The effects of the size of material characteristic length and the coupling number on the thermohydrodynamic performance of a journal bearing are investigated. It is shown, compared with Newtonian fluids, that micropolar fluids exhibit the increase in load capacity and temperature, but the decrease in coefficient of friction and side leakage flow. It is also indicated that, in the full film region, micropolar fluids increase the values of non-dimensional density, while in the cavitated region, both micropolar fluids and Newtonian fluids yield the same values of the fractional film content. 相似文献
2.
K.P. Gertzos 《Tribology International》2008,41(12):1190-1204
Design of smart journal-bearing systems is an important issue that opens up the possibility for semi-active dynamic control of bearing behavior. Recent studies show that there is an increasing interest in designing hydrodynamically lubricated bearings using electro-rheological fluids (ERFs) or magneto-rheological fluids (MRFs). Both smart fluids behave like Bingham fluids, and thus the Bingham plastic model is used to describe the grease and the electro-rheological (ER) and magneto-rheological (MR) fluids behavior of the non-Newtonian fluid flow. The performance characteristics of a hydrodynamic journal bearing lubricated with a Bingham fluid are derived by means of three-dimensional computational fluid dynamics (3-D CFD) analysis. The FLUENT software package is used to calculate the hydrodynamic balance of the journal using the so-called “dynamic mesh” technique. The results obtained from the developed 3-D CFD model are found to be in very good agreement with experimental and analytical data from previous investigations on Bingham fluids.Journal-bearing performance characteristics, such as relative eccentricity, attitude angle, pressure distribution, friction coefficient, lubricant flow rate, and the angle of maximum pressure, are derived and presented for several length over diameter (L/D) bearing ratios and dimensionless shear numbers T0 of the Bingham fluid. The above diagrams are presented in the form of Raimondi and Boyd charts, and can easily be used in the design and analysis of journal bearings lubricated with Bingham fluids. The core profile formed in the bearing is also calculated and presented for various bearing eccentricities, L/D ratios, and shear numbers T0, and found to be in very good agreement with previous experimental and theoretical investigations. The analysis presented here leads to charts that could be used by the designer engineer to design smart journal bearings. 相似文献
3.
Tomoko Hirayama Naomi Yamaguchi Noriaki Hishida Hiroshi Yabe 《Tribology International》2009,42(5):675-681
Optimization of groove dimensions in herringbone-grooved journal bearings is discussed in this paper with aims to design precision spindles with improved run-out characteristics. An evaluation index to represent the magnitude of the amplitude of repeatable run-out is firstly introduced and the groove design parameters are theoretically discussed to minimize the index value with taking the stable operation condition of the bearing into account. The comprehensive parameter research reveals a guideline for the design of the groove configuration for good run-out characteristics. Experiments with a shaft with grooves designed along the proposed guideline show that the amplitude of repeatable run-out reduces to about half of that of a bearing with currently designed groove configurations, thus confirming validity of the above guideline. 相似文献
4.
Non-recessed journal bearings have been successfully used in various engineering applications because of their good performance over a wide range of speed and load, besides their relative simplicity in manufacturing. Due to many starts and stops in its lifespan, the bearing bush wears progressively on account of rubbing, which affects bearing performance. The present work is an attempt to analytically study the performance of a worn non-recessed (hole-entry) capillary-compensated hybrid journal-bearing system. FEM has been used to solve the Reynolds equation, governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation using suitable iterative technique. A study is conducted for two configurations, i.e., symmetrical and asymmetrical hole-entry journal-bearing system. The simulated results of bearing characteristics parameters in terms of maximum fluid-film pressure, minimum fluid-film thickness, flow rate, frictional torque, rotor dynamic coefficients, stability threshold speed and whirl frequency ratio, etc. have been presented for the wide range of various values of load and speed. The results indicate that the wear affects the bearing performance considerably; therefore, a due consideration of wear defect should be given for an accurate prediction of the bearing performance over a number of cycles. The computed results further indicate that the influence of wear defect on journal bearing performance may be minimized if a designer selects a suitable bearing configuration. 相似文献
5.
Vegetable‐based oils are not only biodegradable but also environmentally advantageous, and the range of lubrication applications offered by them continues to grow. Recently, vegetable‐based oils have been combined with synthetic esters to produce modified vegetable‐based oils. This paper presents an investigation of the theoretical characteristics of hydrodynamic journal bearings lubricated with non‐Newtonian soybean‐based oil. The soybean‐based oil was mixed with synthetic esters and silicone oil. The relationship between the shear stress and shear strain rate of the oil was obtained experimentally. The time‐dependent modified Reynolds equation including non‐Newtonian effects was formulated for short circular journal bearings. The perturbation technique was applied to the Reynolds equation to obtain zero‐ and first‐order pressure equations. The finite difference method was used to calculate the pressure distribution numerically. The static and dynamic characteristics, such as pressure distribution, Sommerfeld number, attitude angle, and spring and damping coefficients, were obtained numerically. It was found that the nonlinear factors of the non‐Newtonian soybean‐based oil strongly affected the performance characteristics of the journal bearings. 相似文献
6.
Thermohydrodynamic analysis of journal bearings is extended to include couple stress effects in lubricants blended with high polymer additives. Based on the micro-continuum theory, a modified energy equation is derived and then is simultaneously solved with the heat transfer equation as well as the modified Reynolds equation. The effects of couple stress on the key performance of a finite journal bearing, such as maximum temperature, shaft temperature, load capacity, friction force, friction coefficient, and side leakage flow, are presented. The results have shown that lubricants with couple stresses, compared with Newtonian lubricants, not only yield an obvious increase in load capacity and decrease in friction coefficient, but also produce a lower bearing temperature field. Thus it can be concluded that the lubricant with couple stress does improve the performance of journal bearings. 相似文献
7.
In the present work, a permanent magnetic–hydrodynamic hybrid journal bearing is developed. The force of the journal bearing comes from the hydrodynamic film and the permanent magnetic field. When a hydrodynamic film does not form, such as during starting and stopping a machine, the journal bearing relies on the magnetic force to support the rotor system. This paper studies a model of the permanent magnetic force and develops an experimental rig of the journal bearing. Experiments show that the hydrodynamic film force uncouples with the magnetic force in the journal bearing. Predictions from the model are compared with experimental data. 相似文献
8.
Rotation effects on hybrid air journal bearings 总被引:1,自引:0,他引:1
Rotation effects of hybrid air journal bearings with multi-arrays of orifice feedings are investigated numerically. Porous air bearings are also solved for comparison. The results show that bearing load capacity W increases faster with eccentricity ratio than with rotation speed, i.e. bearing number Be. There are optimum orifice diameters, i.e. optimum feeding parameters λo, which give maximum load capacity W for orifice feeding; but for porous feeding, load capacity W increases with feeding parameters λp. It was found that the load capacity increases with feeding arrays of orifices and five rows of orifice feedings can approximate the operations of porous bearings very well. It was also found that load capacity W does not increase further when air supply pressure exceeds 5 atm because there is a critical pressure ratio through orifice (e.g. (Po/Ps)<0.53). 相似文献
9.
Modern high-performance machines require bearings to operate under stringent conditions. For bearings operating under heavy loads, the bearing deformations can no longer be neglected as they are comparable to the order of magnitude of the fluid film thickness. This paper describes the performance of slot-entry hydrostatic/hybrid journal bearings by considering bearing shell flexibility in the analysis. The relevant governing equations have been solved by the finite element method. Slot-entry journal bearings of two separate configurations have been studied over a wide range of bearing operating and geometric parameters. Elastic effects are found to significantly affect the static and dynamic performance characteristics of the bearing studied. The study indicates that, for given operating conditions, to get optimum performance of a bearing proper selection of the bearing flexibility parameter (), the concentric design pressure ratio () and the type of bearing configuration (symmetric/asymmetric) are essential. 相似文献
10.
Florian Grün István Gódor Walter Gärtner Wilfried Eichlseder 《Tribology International》2011,44(11):1271-1280
This paper describes the analysis of overlay materials used in journal bearings. We conducted model tests using ring-on-disc test configuration and component tests on bearing test rigs. Appropriate test strategies were designed for investigating the running-in, stable operating, emergency running and break-down behaviour. We investigated three different types of overlays: PbSn18Cu2 galvanic, polymeric overlay (PAI matrix with MoS2-lamellae and graphite), PVD-coated AlSn20Cu-Sputter. Main results are: PbSn18Cu2 improves emergency running conditions. Polymeric overlay shows high need for running-in, where a particle structured surface is formed. AlSn20Cu-Sputter exhibits lowest wear and highest load capacity in component tests, but requires optimum running conditions. 相似文献
11.
A study of friction in worn misaligned journal bearings under severe hydrodynamic lubrication 总被引:2,自引:0,他引:2
Friction occurs in all mechanical systems such as transmissions, valves, piston rings, bearings, machines, etc. It is well known that in journal bearings, friction occurs in all lubrication regimes. However, shaft misalignment in rotating systems is one of the most common causes of wear. In this work, the bearing is assumed to operate in the hydrodynamic region, at high eccentricities, wear depths, and angular misalignment. As a result, the minimum film thickness is 5–10 times the surface finish, i.e., near the lower limit of the hydrodynamic lubrication when taking into account that in the latest technology CNC machines the bearing surface finish could be less than 1–2 μm.An analytical model is developed in order to find the relationship among the friction force, the misalignment angles, and wear depth. The Reynolds equation is solved numerically; the friction force is calculated in the equilibrium position. The friction coefficient is presented versus the misalignment angles and wear depths for different Sommerfeld numbers, thus creating friction functions dependent on misalignment and wear of the bearing. The variation in power loss of the rotor bearing system is also investigated and presented as a function of wear depth and misalignment angles. 相似文献
12.
Commercial lubricants, due to the presence of different types of additives, behave like non-Newtonian fluids. The effect of this nonlinear behaviour on the performance characteristics of finite-width journal bearings is investigated using the Eyring model for the shear stress and shear strain rate. the finite element method using Galerkin's technique has been used to solve the momentum equations and the continuity equation in cylindrical coordinates, representing the flow field in the clearance space of a journal bearing system using Newtonian fluids; the non-Newtonian effect is introduced by modifying the viscosity term for the model in each iteration. The results of static performance characteristics for finite-width journal bearings having non-Newtonian lubricants have been obtained. 相似文献
13.
This paper presents an enhanced artificial life algorithm for optimum design of short journal bearing. As artificial life organisms have a sensing system, they can find the resource they want and metabolize it. The characteristics of artificial life are emergence and dynamic interaction with the environment. In other words, the micro-interaction with each other in the artificial life's group results in emergent colonization in the whole system. In this paper, artificial life algorithm by using the above characteristics is applied to the optimum design of short journal bearing. The optimized results were compared with those of genetic algorithm and successive quadratic programming, and identified the optimizing ability. 相似文献
14.
A growing interest is given to the textured hydrodynamic lubricated contacts. The use of textured surfaces with different shapes of microcavities (textures) and at different locations of the texture zone can be an effective approach to improve the performance of bearings. The present study examines the texture location influence on the hydrodynamic journal bearing performance. A numerical modelling is used to analyze the cylindrical texture shape effect on the characteristics of a hydrodynamic journal bearing. The theoretical results show that the most important characteristics can be improved through an appropriate arrangement of the textured area on the contact surface. 相似文献
15.
初始状态对径向滑动轴承热瞬态过程的影响 总被引:1,自引:0,他引:1
研究了径向滑动轴承在阶跃载荷扰动下的瞬态绝热行为.通过对轴承油膜压力、温度和各组成部分的动力学参数进行建摸,应用数值方法对模型求解.获得了大栽荷扰动工况下径向滑动轴承热瞬态运动参数的非线性响应.在此基础上讨论了初始稳态压力和转速对轴承热瞬态过程的影响. 相似文献
16.
Steady-state and stability characteristics of herringbone grooved journal bearings (HGJBs) are found considering thermal effect. The temperature of the fluid film rises significantly due to the frictional heat, thereby the viscosity of the fluid and the load carrying capacity decrease. A thermodynamic analysis requires the simultaneous solution of Reynolds equation along with energy equation of the fluid and heat conduction equations in the bush and the shaft. The linearized first-order perturbation technique is employed for the prediction of stiffness and damping coefficients of the oil film. Thereafter mass parameter and whirl ratio are found from the stability analysis. It is difficult to obtain the solution due to the numerical instability when the bearing is operated at high eccentricity ratios. 相似文献
17.
This work proposes a framework to the numerical identification of nonlinear fluid film bearing parameters from large journal orbital motion (20–60% of the bearing clearance). Nonlinear coefficients are defined by a third order Taylor expansion of bearing reaction forces and are evaluated through a least mean square in time domain technique. The journal response is obtained from a computational fluid dynamic (CFD) model of a plain journal bearing on high dynamic loading conditions. The model considers fluid–structure interaction between the fluid flow and the journal. The case in study considers a laboratory test rig. Results indicate that nonlinear coefficients have an important effect on stiffness and damping. It was found a change on nonlinear behavior occurred when the Oil Whirl phenomenon starts, which it is not seen in classical linear models. 相似文献
18.
The steady state and dynamic characteristics including whirl instability of oil journal bearings with single axial groove located at the top of the bearing and then at some angular interval from the top from which oil is supplied at constant pressure are obtained theoretically. The Reynolds equation is solved numerically by finite difference method satisfying the appropriate boundary conditions. The dynamic behaviour in terms of stiffness and damping coefficients of fluid film and stability are found using a first-order perturbation method for each location of the groove. It has been shown that both load capacity, end flow is maximum when the feeding groove is at 12° location and thereafter the load capacity falls, stability improves for smaller groove angle and groove length at higher value of eccentricity ratio and speed. The stiffness and damping coefficient magnitude is found to be higher for the bearing with smaller groove angle and groove length, the difference between the hydrodynamic and hydrostatic load increases at 12° groove location. 相似文献
19.
A new approach and relevant test rig to measure the friction of micro journal bearings are introduced in this paper. The micro bearings under the load of milliNewton scale can be tested to indicate their tribological behavior. The test rig has the following features. (1) The separated bearing halves are attached to the journal with a soft string wrapped around them. The string is strained in a vertical line with the upper end located at a beam and the lower end hanged with a standard weight, which supplies pressure between the bearing and the journal, without bending the spindling journal. (2) The frictional force of the rotating journal on the bearing halves will result in a difference between the forces at the two string ends. (3) This force difference can be sensitively detected by strain gauges on the beam. Therefore, the micro friction between the bearing and the spinning journal can be detected and indicated. 相似文献
20.
In this paper, synchronous control of bearing is employed through a control algorithm for an actively controlled hydrodynamic journal bearing in order to suppress whirl instability and to reduce the unbalance response of a rotor-bearing system. Furthermore, a cavitation algorithm, implementing the Jakobsson–Floberg–Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis, which uses the Reynolds condition. The unbalance responses and stability characteristics of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance responses of the system can be greatly decreased by synchronous control of the bearing. There is an optimum phase difference, which gives the minimum unbalance response of the system at given operating conditions. It is also found that the stability threshold of the system can be greatly increased by synchronous control of the journal bearing. 相似文献