首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
综述了近年来超高相对分子质量聚乙烯(PE-UHMW)耐磨性改性的研究进展,介绍了物理共混改性法(无机填料填充和聚合物共混)和化学改性法(交联和等离子体处理)在PE-UHMW耐磨性改性方面的应用,讨论了各种改性方法对其耐磨性改性的改性机理和改性效果,并对PE-UHMW耐磨性改性的发展趋势作了展望。  相似文献   

2.
制备了激光强化电刷镀Ni镀层,研究了其硬度和耐磨性,分析了激光强化电刷镀Ni镀层耐磨性增加的原因.实验结果表明:当P激光为400 W时,激光强化电刷镀Ni镀层的硬度比普通Ni刷镀层提高约250 HV,相对耐磨性是1.56倍,晶粒细化是镀层硬度和耐磨性增强的主要原因.  相似文献   

3.
聚氨酯涂料的耐磨实验探索   总被引:1,自引:0,他引:1  
考察了几种聚氨酯清漆及色漆的耐磨性,以及填料对漆膜耐磨性的影响.  相似文献   

4.
表面冶金涂层的磨损失效形式与对策   总被引:1,自引:0,他引:1  
综述了表面冶金涂层在不同工作条件下磨损失效的机制、现象和形貌特性,分析了涂层磨损失效的原因,介绍了改善涂层耐磨性的措施和对策,给出了提高涂层耐磨性、延长其使用寿命的典型实例.对改善涂层耐磨性的新技术和新方法进行了展望.  相似文献   

5.
在汽车半轴用钢(40Cr钢)上电沉积Ni-微米SiC复合镀层和Ni-纳米SiC复合镀层。研究了两种Ni-SiC复合镀层的硬度和耐磨性,并研究了纳米SiC的质量浓度对Ni-纳米SiC复合镀层的硬度和耐磨性的影响。结果表明:Ni-纳米SiC复合镀层的耐磨性优于Ni-微米SiC复合镀层的耐磨性;纳米SiC增多有利于提高Ni-纳米SiC复合镀层的硬度,改善耐磨性;当SiC粒径为70nm、质量浓度为14g/L时,Ni-纳米SiC复合镀层的硬度最高,达到5 486MPa,耐磨性最好。最优Ni-纳米SiC复合镀层的磨损率明显低于40Cr钢的磨损率,摩擦因数是40Cr钢的3/4,能有效改善汽车半轴用钢的耐磨性。  相似文献   

6.
吴磊 《广东化工》2014,(15):74-75
介绍了碳纤维增强聚醚醚酮(PEEK)复合材料制备工艺、机械力学性能、摩擦磨损机理、导电性,重点研究了制备工艺对机械力学性能的影响,碳纤维添加量和碳纤维的表面处理,对耐磨性和导电性的影响。通过SEM照片和DSC曲线以证明:PEEK和碳纤维结有着良好的结合性,这对复合材料导电性和耐磨性产生一定影响,即随着碳纤维质量分数增加导电性和耐磨性都有提高,碳纤维表面处理有利于提高耐磨性。  相似文献   

7.
电沉积RE-Ni-W-P-SiC复合镀层的硬度与耐磨性研究   总被引:10,自引:0,他引:10  
研究了RE-Ni-W-P-SiC复合镀层的硬度与耐磨性。结果表明,随着加热温度的提高,复合镀层的硬度和耐磨性增加,在400℃时达峰值,温度继续升高,复合镀层硬度和耐磨性呈下降趋势,随着复合镀层中磷含量的增加,其耐磨性改善,在400℃热处理条件下,随着热处理时间的延长,复合镀层的硬度和耐磨性增加,当热处理时间达到3h时,复合镀层硬度和耐磨性达到最佳值,随着镀液中SiC和钨酸钠浓度的增加,复合镀层的硬度和耐磨性均增强。  相似文献   

8.
对聚氨酯改性的环氧耐磨涂料的性能进行测定,采用正交试验法分别测定了制备出的耐磨涂料的附着力、硬度、耐磨性,结果发现聚氨酯改性环氧树脂涂料在不同配比情况下具有不同的硬度、附着力和耐磨性。聚氨酯预聚体的使用,提高了环氧树脂的交联度,明显提高了其耐磨性、附着力和硬度;填料碳化硅和固化剂聚酰胺的使用,能够明显改变环氧树脂的耐磨性、硬度和附着力。  相似文献   

9.
高温耐磨抗氧化陶瓷材料的研究进展   总被引:1,自引:0,他引:1  
赵能伟  郑勇 《硅酸盐通报》2007,26(4):737-742
介绍了陶瓷材料的氧化及磨损机理等方面的近期研究成果,总结了陶瓷材料高温耐磨性、抗氧化性的研究进展,最后提出了改善陶瓷材料耐磨性及抗氧化性的可能途径和方法.  相似文献   

10.
《辽宁化工》2021,50(9)
利用了脉冲电沉积的方法制备了Ni-TiC复合镀层,通过对不同工艺条件下得到的复合镀层的硬度、耐蚀性和耐磨性进行观察和分析,系统研究了电流密度、温度以及镀液中TiC颗粒的质量浓度对复合镀层性能的影响。结果表明:电流密度为5A·dm~(-2)时耐蚀性和耐磨性最好;电镀温度为45℃时硬度、耐蚀性和耐磨性最好;TiC颗粒质量浓度为20g·L~(-1)时耐蚀性和耐磨性最好。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

17.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

18.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号