首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Secondary organic aerosol formation from isoprene photooxidation   总被引:3,自引:0,他引:3  
Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used as the radical precursor, substantially constraining the observed gas-phase chemistry; all oxidation is dominated by the OH radical, and organic peroxy radicals (RO2) react only with HO2 (formed in the OH + H2O2 reaction) or NO concentrations, including NOx-free conditions. At high NOx, yields are found to decrease substantially with increasing [NOx], indicating the importance of RO2 chemistry in SOA formation. Under low-NOx conditions, SOA mass is observed to decay rapidly, a result of chemical reactions of semivolatile SOA components, most likely organic hydroperoxides.  相似文献   

2.
Quantitative kinetic and physical phase partitioning models of secondary organic aerosol (SOA) formation resulting from the reactions of lumped aromatic species were integrated into a state of the art mechanism for gas-phase reactions (SAPRC). Aromatic and aerosol precursor species were aggregated based on their rate of reaction with OH radicals. Model parameters for the lumped model species were estimated based on the properties of individual compounds making up the lumped parameters. The model was applied to estimate the contribution of aromatic precursors to the formation of SOA in Houston, TX.  相似文献   

3.
Quantitative kinetic and physical phase partitioning models of secondary organic aerosol (SOA) formation resulting from the reactions of aromatic species were integrated into a mechanism for gas-phase reactions. Using the resulting model, analyses of the sensitivity of SOA formation to several parameters (e.g., VOC/NOx ratio, rate parameters) were performed. Results indicated that aerosol yield (SOA formed per amount of hydrocarbons reacted) depends on the extent of conversion of parent hydrocarbons, partitioning coefficient, initial aerosol mass concentration, and rate parameters. On the basis of the sensitivity studies, models for SOA yield were developed for 11 aromatic compounds. Comparison of the results from current SOA models to the results from this study suggests that mechanisms describing SOA formation from aromatic species must incorporate the reactions of reactive intermediates.  相似文献   

4.
The formation of secondary organic aerosol (SOA) from the photooxidation of xylene isomers (m-, p-, and o-xylenes) has been extensively investigated. The dependence of SOA aerosol formation on the structure of xylene isomers in the presence of NO was confirmed. Generally, SOA formation of p-xylene was less than that of m- and o-xylenes. This discrepancy varies significantly with initial NOx levels. In a NOx-free environment, the difference of aerosol formation between o- and p-xylenes becomes insignificant. Several chemical pathways for the SOA dependence on structure and NOx are explored, with the experimental findings indicating that organic peroxides may be a major key to explaining SOA formation from aromatic hydrocarbons.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are an ubiquitous class of compounds in the environment, mostly generated by anthropogenic processes. High time resolution measurements are necessary to gain further knowledge on the fate and diurnal pattern of these often carcinogenic and mutagenic compounds in the atmosphere. It is expected to find a strong correlation of the PAH levels with the strength and proximity to sources, as well as with meteorological parameters. To determine the fate of particle-bound PAHs, they were sampled in this study at an urban background site in Zurich, Switzerland, during summer 2002 and winter 2003. Particle-bound PAHs were collected with a rotating drum impactor and subsequently analyzed with two-step laser mass spectrometry. Using this combination of sampling and measurement, size-segregated (10-1.1, 1.1-0.3, and 0.3-0.1 microm) and high time resolution (20 min) data were obtained. The pronounced diurnal cycle (with day/night ratios of 0.1) was only altered during intensive atmospheric mixing periods (resulting in day/night ratios of up to 8) by cleaner air from upper atmospheric layers which was mixed into the boundary layer. During summer, signal intensities due to particle-bound PAHs were about a factor of 2-10 lower than during winter.  相似文献   

6.
A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations over the United States. Oxidation of alkanes is predicted to produce more aerosol than oxidation of PAHs driven by relatively higher alkane emissions. SOA from alkanes and PAHs, although small in magnitude, can be a substantial fraction of the SOA from anthropogenic hydrocarbons, particularly in winter, and could contribute more if emission inventories lack intermediate volatility alkanes (>C(13)) or if the vehicle fleet shifts toward diesel-powered vehicles. The SOA produced from oxidation of alkanes correlates well with ozone and odd oxygen in many locations, but the lower correlation of anthropogenic oligomers with odd oxygen indicates that models may need additional photochemically dependent pathways to low-volatility SOA.  相似文献   

7.
The products of the pyrolysis of four sesquiterpenes, β-caryophyllene, α-cedrene, longifolene and valencene, have been examined. Pyrolysis was carried out at 300, 400 and 500°C, the products determined by GC-MS and then examined for similarities and differences using multivariate data analysis. Analysis showed that longifolene was most resistant and caryophyllene least resistant to pyrolysis with cedrene and valencene occupying intermediate positions. While the compounds were largely unchanged at 300°C, polycyclic aromatic hydrocarbons (PAHs) were major components of the pyrolysates at 400 and 500°C. No less than nine of the 16 EPA priority pollutants were present in the pyrolysates at the higher temperatures.  相似文献   

8.
通过一种简易的方法制备磁性共价有机骨架材料(Fe_3O_4@COF-SCU1),用于磁性固相萃取(MSPE)大红袍茶汤中8种多环芳烃,并结合高效液相色谱—紫外(HPLC-UV)法对其进行定性定量分析。采用电子扫描显微镜、电子透射显微镜、X射线衍射、氮气等温吸附脱附、傅立叶变换红外光谱对Fe_3O_4@COF-SCU1进行表征。试验系统优化了Fe_3O_4@COF-SCU1组成、MSPE的吸附及洗脱条件,并建立多环芳烃的定性定量分析方法。在最佳操作条件下,8种多环芳烃均得到良好的线性关系,相关系数≥0.998 7。方法的检出限(LODs,S/N=3)和定量限(LOQs,S/N=10)分别为0.10~0.40,0.33~1.34ng/mL。用该方法对大红袍茶汤进行分析,加标回收率为74%~106%,相对标准偏差RSD为1.20%~8.50%。结果表明,Fe_3O_4@COF-SCU1可以简便快速地萃取分离痕量水平的多环芳烃。  相似文献   

9.
食品中多环芳烃及卤代多环芳烃的研究进展   总被引:1,自引:0,他引:1  
王丽  金芬  张雪莲  焦必宁  邵华  金茂俊  王静 《食品工业科技》2012,33(10):369-373,377
综述了多环芳烃及卤代多环芳烃的性质、毒性及国内外食品中的污染情况和研究现状,并对目前的分析测定方法进行了介绍,希望为我国开展食品领域内多环芳烃和卤代多环芳烃的研究提供参考。  相似文献   

10.
11.
Photodegradation of 12 polycyclic aromatic hydrocarbons was studied in aerated pure water, solutions of Suwannee River fulvic acid, and natural waters using polychromatic light (>290 nm). Quantum yields in pure water varied from 3.2 x 10(-5) to 9.2 x 10(-3). No obvious relationships were evident among the quantum yields and molecular properties. Photodegradation rate constants in solutions of Suwannee River fulvic acid or natural waters were largely unchanged compared to rate constants in pure water. Estimates of PAH photodegradation rates in natural waters can thus be obtained employing the quantum yields in pure water, PAH absorption, and solar irradiance. Calculated rate constants for photodegradation in surface waters during the summertime at mid-latitude varied from 3.2 x 10(-3) to 7.6 h(-1).  相似文献   

12.
This study considers desorption kinetics for 12 field-aged polycyclic aromatic hydrocarbons (PAHs) desorbing from size- and density-fractionated sediments collected from two locations in the New York/New Jersey Harbor Estuary. Desorption kinetics for PAHs with a log octanol-water partition coefficient greater than 6 were well-described by a one-domain diffusion model that assumes that PAHs are initially uniformly distributed throughout spherical sediment aggregates. PAH hydrophobicity and sediment specific surface area were the parameters most strongly correlated with the magnitude of the observed diffusivity for the one-domain model. For less hydrophobic PAHs, a two-domain desorption model was used also, and the results suggest that a substantial fraction of these field-aged PAHs desorb via a relatively fast macro-mesopore diffusion mechanism. The model-predicted fraction of PAHs in the fast-diffusion regime by compound and sediment was highly correlated with the measured percent PAH desorption in 24 h. The fast-domain diffusivity was 100 times greater than the slow-domain diffusivity, was correlated with both PAH properties and sediment physical and chemical properties, and could be estimated by readily obtainable physical and chemical parameters. In contrast, the slow-domain diffusivity was not significantly correlated with PAH properties. Our results suggest that macro-mesopore diffusion may control mass transport of less-hydrophobic PAHs in estuarine sediments.  相似文献   

13.
A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Ni?o/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds.  相似文献   

14.
Outflow of polycyclic aromatic hydrocarbons from Guangdong, southern China   总被引:1,自引:0,他引:1  
The atmospheric outflow of polycyclic aromatic hydrocarbons (PAHs) from Guangdong, China, a region of high PAH emission, was modeled using a potential receptor influence function (PRIF) probabilistic model which was based on a spatially resolved PAH inventory and air mass forward-trajectory calculations. Photochemical degradation and deposition (dry and wet) of PAHs during atmospheric transport were taken into consideration. On average, 48% of the PAHs (by mass) remained in the atmosphere for a transport period of 5 days, staying within the boundary of the source region. The medium molecular weight PAHs (four rings) were predicted to travel longer distances in the atmosphere than the low (three rings) or high molecular weight PAHs (five rings) because they are less photodegradable than the lower molecular weight, gas-phase PAHs and less likelyto undergo wet and dry depositions than the higher molecular weight, particulate phase PAHs. Under the strong influence of the East Asian monsoons in winter, the predominant outflow pattern of PAHs from Guangdong was to the South China Sea and Southeast Asian countries. In summer, PAHs were transported primarily to northern mainland China. Under particular weather conditions in winter, the PAH-containing air masses were lifted by cold fronts or convection and transported toward the Pacific Ocean by westerly winds. In addition to the distinct seasonality in PAH dispersion and outflow, interannual long-term variation in the outflow is likely influenced by El Ni?o and southern oscillation.  相似文献   

15.
Emission of polycyclic aromatic hydrocarbons in China   总被引:40,自引:0,他引:40  
Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization.  相似文献   

16.
简述了近年来关于食品中多环芳烃的形成机理、分析方法及控制措施的研究进展,以期为解决食品中多环芳烃的污染问题提供依据。  相似文献   

17.
A study was conducted on the effect of two different biological factors, microbial surfactants and biodegradation, on the kinetics of partitioning of polycyclic aromatic hydrocarbons (PAHs) from nonaqueous-phase liquids (NAPLs). The effect of rhamnolipid biosurfactants on partitioning into the aqueous phase of naphthalene, fluorene, phenanthrene, and pyrene, initially dissolved in di-2-ethylhexyl phthalate (DEHP) or 2,2,4,4,6,8,8-heptamethylnonane (HMN), was determined in multiple-solute experiments. Biosurfactants at a concentration above the CMC enhanced the partitioning rate of fluorene, phenanthrene, and pyrene but were ineffective with naphthalene. Enhancement of partitioning was also observed in the presence of suspended humic acid-clay complexes, which simulated the solids often present in the subsurface. Biosurfactants sorbed to the complexes modified PAH partitioning between the NAPL and these solids, increasing the fraction of solid-phase PAH. Biodegradation-driven partitioning was estimated in mineralization experiments with phenanthrene initially present in HMN and three representative soil bacterial strains, differing in their potential adherence to the NAPL. In the three cases, the rates of mineralization were very similar and significantly higher than the abiotic rate of partitioning. Our study suggests that in NAPL-polluted sites, partitioning of PAH may be efficiently enhanced by in situ treatments involving the use of biosurfactants and biodegradation.  相似文献   

18.
This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.  相似文献   

19.
20.
Indoor solid fuel combustion is a dominant source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) and the latter are believed to be more toxic than the former. However, there is limited quantitative information on the emissions of OPAHs from solid fuel combustion. In this study, emission factors of OPAHs (EF(OPAH)) for nine commonly used crop residues and five coals burnt in typical residential stoves widely used in rural China were measured under simulated kitchen conditions. The total EF(OPAH) ranged from 2.8 ± 0.2 to 8.1 ± 2.2 mg/kg for tested crop residues and from 0.043 to 71 mg/kg for various coals and 9-fluorenone was the most abundant specie. The EF(OPAH) for indoor crop residue burning were 1-2 orders of magnitude higher than those from open burning, and they were affected by fuel properties and combustion conditions, like moisture and combustion efficiency. For both crop residues and coals, significantly positive correlations were found between EFs for the individual OPAHs and the parent PAHs. An oxygenation rate, R(o), was defined as the ratio of the EFs between the oxygenated and parent PAH species to describe the formation potential of OPAHs. For the studied OPAH/PAH pairs, mean R(o) values were 0.16-0.89 for crop residues and 0.03-0.25 for coals. R(o) for crop residues burned in the cooking stove were much higher than those for open burning and much lower than those in ambient air, indicating the influence of secondary formation of OPAH and loss of PAHs. In comparison with parent PAHs, OPAHs showed a higher tendency to be associated with particulate matter (PM), especially fine PM, and the dominate size ranges were 0.7-2.1 μm for crop residues and high caking coals and <0.7 μm for the tested low caking briquettes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号