首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在25℃~100℃的温度范围内,测定了PdY8.5Ru0.19合金吸放氢、氘的P-C-T曲线.与纯钯相比,合金的P-C-T曲线坪区变窄,坪压降低,有显著的同位素效应,但迟滞效应较小.合金吸放氢氘的P-C-T曲线可拟合成p=A(er/B-1)形式.吸氘热焓为-13.9 kJ/mol·D2,熵变为-9.4 J/mol K·D2.进行了25℃下合金吸氢、氘速率的测量,合金吸氢、氘速率常数分别为KH=2.39×10-4 mol·s-1,KD=1.16×10-4 mol·s-1.而且合金的氢化过程用渐进转化模型描述.  相似文献   

2.
采用机械合金化法制备了Mg2Ni-1.0%Pd(质量分数,下同)合金粉末,用XRD及AFM等分析表征了球磨20h后粉末的相结构和微观形貌,测定了Mg2Ni-1.0%Pd合金吸放氢氘的P-C-T曲线和动力学曲线。结果表明,机械合金化制备的Mg2Ni-1.0%Pd合金粉末粒度在10nm~50nm之间;同熔炼法制备的Mg2Ni合金相比,纳米Mg2Ni-1.0%Pd合金吸氢时的焓变值减小,放氢时焓变值增大,可逆贮氢容量为1.06(H/M,原子比,下同);与吸放氢相比,在相同温度下合金吸放氘的坪台压升高,焓变值减小,具有显著的同位素效应。纳米Mg2Ni-1.0%Pd合金的吸氢速率和吸氘速率与温度的关系在573K附近发生变化。  相似文献   

3.
采用化学镀方法在TiZrNiCo合金颗粒表面包覆上0.4~2μm厚的Pd膜,并测得不同膜厚的Pd/TiZrNiCo试样在混合气体中的吸氢动力学。结果表明:Pd膜越薄,Pd/TiZrNiCo抗毒化性能及吸氢动力学性能越好,0.4μm厚Pd膜试样的吸氢量为2μm厚Pd膜试样的1.6倍。Pd/TiZrNiCo试样吸放氢后粉化,引发Pd膜破裂导致吸氢速率减缓与基体粉化引发吸氢速率加快的两种效果,吸氢量随吸放氢次数的增加而出现波动性的上升回落。根据吸氢机理及毒化机理,提出并采用相应的动力学模型,并对TiZrNiCo吸纯氢及Pd/TiZrNiCo吸氢动力学曲线进行了拟合。  相似文献   

4.
在25~50℃的温度范围内,测定了钯氘化物(PdD0.6)的放氘动力学曲线。结果表明:钯氘化物在室温附近可实现快速放氘,放氘反应速率随温度升高而增加;在相同温度下,随着放氘压力接近于该温度下的放氘平衡压,放氘速率逐渐减小;钯氘化物的放氘动力学受化学吸附的氘原子在钯表面复合过程的控制,放氘反应速率常数与温度之间满足Arrhenius关系;放氘反应的活化能为30.02kJ·mol-1·D2-1。  相似文献   

5.
研究Ti40合金在550~700°C温度区间的吸氢动力学,初始氢压为15.88~45.88kPa。研究表明,Ti40合金初始吸氢温度为515°C,吸氢时达到平衡所需的时间随着温度和初始氢压的增加而缩短,而吸氢速率和平衡氢压随着温度和初始氢压的增加而增加。在低温时,吸氢过程包括3个阶段:Ⅰ孕育期,Ⅱ第1吸氢阶段和Ⅲ第2吸氢阶段。在相同温度下,不同阶段的速率常数遵循以下关系:kⅡ>kⅠ>kⅢ。在相同阶段,速率常数随温度的升高而增大。吸氢过程中第1和第2吸氢阶段的激活能分别为73.3和29.6kJ/mol。第2吸氢阶段的速率控制步骤为氢在β-Ti中的扩散。  相似文献   

6.
利用一种新模型分析了纳米晶镁粉的吸放氢动力学,量化了球磨和添加剂Pd对镁粉吸放氢动力学性能的改善效果。结果表明,球磨能大幅度降低氢化反应活化能,提高镁粉的氢化速率30倍。添加1%(质量分数)Pd的纳米镁粉(30nm)的吸放氢速率比未添加Pd的纳米镁粉(30nm)的吸氢速率提高6.6倍。模型计算出30nmMg-1%Pd(质量分数)合金的吸氢活化能为38.74kJ/molH2。  相似文献   

7.
研究了V40-Fe8-Ti-Cr(Ti/Cr=0.95~1.20) 四元合金的结构及吸放氢性能.结果表明:不同Ti/Cr比的合金均为bcc单相结构,随着Ti/Cr比的降低,合金的晶格常数降低,平台压升高,吸氢量降低,放氢量先增加后降低;当Ti/Cr为1时,得到合金V40Ti26Cr26Fe8在298 K下具有最大的放氢量2.4%(质量分数),平台压为0.24 MPa.通过计算得到V40Ti26Cr26Fe8的焓变ΔH和熵变ΔS分别为-39.6 kJ·mol-1H和-140.3 J·mol-1·K-1,在423 K下的放氢平台压力可达27.5 MPa.  相似文献   

8.
热压摩尔比为n(TiC)n(Ti)n(Si)n(Al)=2110.2混合粉末制备的Ti3Si(1-x)AlxC2(0<x≤0.16)材料在900℃~1 300℃空气中的恒温氧化行为遵循抛物线规律,但在1 200℃和1 300℃是一个两步抛物线过程.随着温度升高,氧化抛物线速率常数kp从900℃的2.45×10-10 kg2·m-4·s-1增大到1 300℃的5.71×10-9 kg2·m-4·s-1,计算的氧化活化能为110 kJ·mol-1±10kJ·mol-1.弥散分布在基体中的Al改变了Ti3SiC2材料的氧化机制,使试样表面形成由大量α-Al2O3和少量TiO2与SiO2组成的致密氧化层,从而提高了材料的抗氧化性.  相似文献   

9.
通过PCT测试及XRD分析研究了添加10%(质量分数,下同)Ni并球磨对Mg17Al12合金吸放氢性能及结构的影响.10%Ni的添加改善了Mg17Al12合金的吸放氢性能.合金在423 K下即可快速吸氢,在523 K下表现最优的吸放氢性能并具有优异的动力学性能,在15 min内吸氢量可以达到2.93%(质量分数,下同),饱和吸氢量达到4.20%.合金在523 K下放氢平台压达到0.3 MPa,放氢量为3.45%.合金氢化物的生成焓和生成熵分别为-68.37 kJ·mol-1H2、-121.42 J.(mol-1·K-1).在Mg17Al12合金添加10%Ni球磨1 h后,主相仍然为Mg17Al12相并有少量的Al-Ni金属间化合物相,吸氢饱和后合金的相组成为MgH2、Al以及Al-Ni金属间化合物,放氢后主相为Mg17Al12相,表明Mg17Al12相在吸放氢过程中的相变是可逆的.  相似文献   

10.
总的说来,存在于氢气气氛中的钯或钯合金,在低温时吸收大量的氢,生成β—相钯,即钯和氢的化合物。就纯钯而言,在低温下完全生成β—相钯,其原子比H/Pd=0.65—0.75。(原子比H/Pd是钯或钯合金的原子数去除被吸收的氢原子数的值)β—相钯  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号