首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delay Tolerant Networks (DTNs) provide message delivery services to users via intermittently connected nodes. In DTNs, routing is one of the most challenging issues since end-to-end connectivity between nodes may not be available most of the time. Although many routing protocols for DTNs have been proposed, they do not achieve satisfactory performance, since they exploit only some of the network characteristics. In this paper, we present a new DTN routing protocol, called the Link Contact Duration-based Routing Protocol (LCD). Like existing protocols, LCD uses the disconnect duration of a link between two nodes to find the routing path with the shortest end-to-end delay. In addition, LCD uses the contact duration of a link and the number of buffered messages to deliver as many messages as possible in a short time. Our simulation results show that LCD has better performance than existing DTN routing protocols.  相似文献   

2.
Delay Tolerant Networks (DTNs) provide a communications infrastructure for environments lacking continuous connectivity. Such networks rely on the mobility of nodes and the resulting opportunistic connections to carry messages from source to destination. Unfortunately, exchanging packets with an arbitrary intermediary node makes privacy difficult to achieve in these systems as any adversary can easily act as an intermediary and determine the sender and receiver of a message. In this paper, we present ARDEN, an anonymous communication mechanism for DTNs based on a modified onion routing architecture. Instead of selecting specific nodes through which messages must pass as is traditionally done in onion routing, ARDEN uses Attribute-Based Encryption (ABE) to specify and manage groups that may decrypt and forward messages. Through simulation, we show that this approach not only increases throughput and reduces end-to-end latency over traditional onion routing techniques, but also adds minimal overhead when compared to DTN routing protocols that do not provide anonymity guarantees. Through this, we show that ARDEN is an effective solution for anonymous communication in intermittently connected networks such as DTNs.  相似文献   

3.

Delay tolerant networks (DTNs) are a newest class of networks that have the ability to provide connectivity to areas that are yet to be served by conventional networks. Routing in DTN is a tough task because nodes have no prior information about the partitioned network and transfer opportunities between peer nodes are limited. A node in a DTN delivers messages to the destination using the store and forward strategy. Messages are transmitted to multiple intermediate relay nodes encountered in order to increase the opportunity for the message to reach the destination. Encounter duration is the time period in which a pair or more mobile nodes move into the communication range of each other and hence are able to transfer messages between them. Since the node movements are arbitrary, the encounter duration is unpredictable. This research work proposes a novel encounter based fuzzy logic routing (EFLR) scheme to maximize message delivery with reduced overhead. The fuzzy based utility computation is used for finding a better node to forward messages as well as to drop messages from buffer. Simulation results reveal that EFLR performs better than other existing DTN routing protocols.

  相似文献   

4.
Disruption tolerant network (DTN) is characterized by frequent partitions and intermittent connectivity. Power management issue in such networks is challenging. Existing power management schemes for wireless networks cannot be directly applied to DTNs because they assume the networks are well-connected. Since the network connectivity opportunities are rare, any power management scheme deployed in DTNs should not worsen the existing network connectivity. In this paper, we design a power management scheme called context-aware power management scheme (CAPM) for DTNs. Our CAPM scheme has an adaptive on period feature that allows it to achieve high delivery ratio and low delivery latency when used with Prophet, a recently proposed DTN routing scheme. Via simulations, we evaluate the performance of the CAPM scheme when used with the Prophet routing scheme in different scenarios e.g. different traffic load, node speeds and sleep patterns. Our evaluation results indicate that the CAPM scheme is very promising in providing energy saving (as high as 80%) without degrading much the data delivery performance.  相似文献   

5.
Delay tolerant networks (DTNs) rely on the mobility of nodes and sequences of their contacts to compensate for lack of continuous connectivity and thus enable messages to be delivered from end to end in a “store-carry-forward” way, where multiple relay nodes are usually employed in the message delivery process. In this paper, we focus on such relay cooperation and analytically explore its impact on the delivery performance in DTNs. Specifically, we first develop a continuous time Markov chain-based theoretical framework to model the complicated message delivery process in delay tolerant networks adopting the two-hop relay algorithm. We then derive closed-form expressions for both the expected delivery delay and the corresponding expected delivery cost, where the important relay behaviors of forwarding traffic for itself or for other nodes are carefully incorporated into the analysis.  相似文献   

6.
Delay tolerant networks (DTNs) are an emerging class of wireless networks which enable data delivery even in the absence of end-to-end connectivity. Under these circumstances, message replication may be applied to increase the delivery ratio. The requirement of long term storage and message replication puts a burden on network resources such as buffer and bandwidth. Buffer management is an important issue which greatly affects the performance of routing protocols in DTNs. Two main issues in buffer management are drop decision when buffer overflow occurs and scheduling decision when a transmission opportunity arises. The objective of this paper is to propose an enhancement to the Custom Service Time Scheduling traffic differentiation scheme by integrating it with a fuzzy based buffer ranking mechanism based on three message properties, namely, number of replicas, message size and remaining time-to-live. It uses fuzzy logic to determine outgoing message order and to decide which messages should be discarded within each traffic class queue. Results of simulation study show that the proposed fuzzy logic-based traffic differentiation scheme achieves improved delivery performance over existing traffic differentiation scheme for DTNs.  相似文献   

7.
Tuan Le  Mario Gerla 《电信纪事》2018,73(9-10):549-558
Delay-tolerant networks (DTNs) are sparse mobile ad hoc networks, in which there is typically no complete path between the source and destination. Anycast is an important group communication paradigm for numerous DTN applications such as resource discovery and information exchange in emergency or crisis situations. Unlike unicast and multicast, which have been studied extensively in DTNs, few prior works have addressed the DTN anycast routing problem. Furthermore, they often ignore the time constraint and assume long contact durations in formulating the relay selection strategy. In this paper, we study a single-copy time-constrained anycast (TCA) routing under short contact duration. We address two key issues: (1) to which next hop relay node should messages be forwarded and (2) in which order should messages be forwarded. To reduce the transmission cost, we select relay nodes from both current and past contacts based on the one-hop and two-hop delivery probabilities, respectively. We derive the delivery probability from the distribution of inter-contact time and contact duration time. We address the case of exponential and Pareto distribution, which are the most popular assumptions in literature. For the message scheduling, messages with the highest delivery probability are prioritized to be transmitted first. Extensive simulation results based on Cabspotting and MIT Reality traces show that our scheme can achieve up to 29% higher delivery rate, 24% lower delay, and 36% lower transmission cost compared to other anycast routing strategies.  相似文献   

8.
Delay tolerant networks are a class of ad hoc networks that enable data delivery even in the absence of end‐to‐end connectivity between nodes, which is the basic assumption for routing in ad hoc networks. Nodes in these networks work on store‐carry and forward paradigm. In addition, such networks make use of message replication as a strategy to increase the possibility of messages reaching their destination. As contact opportunities are usually of short duration, it is important to prioritize scheduling of messages. Message replication may also lead to buffer congestion. Hence, buffer management is an important issue that greatly affects the performance of routing protocols in delay tolerant networks. In this paper, Spray and Wait routing protocol, which is a popular controlled replication‐based protocol for delay tolerant networks, has been enhanced using a new fuzzy‐based buffer management strategy Enhanced Fuzzy Spray and Wait Routing, with the aim to achieve increased delivery ratio and reduced overhead ratio. It aggregates three important message properties namely number of replicas of a message, its size, and remaining time‐to‐live, using fuzzy logic to determine the message priority, which denotes its importance with respect to other messages stored in a node's buffer. It then intelligently selects messages to schedule when a contact opportunity occurs. Because determination of number of replicas of a message in the network is a difficult task, a new method for estimation of the same has been proposed. Simulation results show improved performance of enhanced fuzzy spray and wait routing in terms of delivery ratio and resource consumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Delay tolerant networks (DTNs) are characterized by delay and intermittent connectivity. Satisfactory network functioning in a DTN relies heavily on co-ordination among participating nodes. However, in practice, such co-ordination cannot be taken for granted due to possible misbehaviour by relay nodes. Routing in a DTN is, therefore, vulnerable to various attacks, which adversely affect network performance. Several strategies have been proposed in the literature to alleviate such vulnerabilities—they vary widely in terms of throughput, detection time, overhead etc. One key challenge is to arrive at a tradeoff between detection time and overhead. We observe that the existing table-based reactive strategies to combat Denial-of-service (DoS) attacks in DTN suffer from two major drawbacks: high overhead and slow detection. In this paper, we propose three secure, light-weight and time-efficient routing algorithms for detecting DoS attacks (Blackhole and Grey-hole attacks) in the Spray & Focus routing protocol. The proposed algorithms are based on use of a small fraction of privileged (trusted) nodes. The first strategy, called TN, outperforms the existing table-based strategy with 20–30 % lesser detection time, 20–25 % higher malicious node detection and negligible overhead. The other two strategies, CTN_MI and CTN_RF explore the novel idea that trusted nodes are able to utilize each others’ information/experience using their long range connectivity as and when available. Simulations performed using an enhanced ONE simulator reveals that investing in enabling connectivity among trusted nodes (as in CTN_RF) can have significant performance benefits.  相似文献   

10.
Owing to the uncertainty of transmission opportunities between mobile nodes, the routing in delay tolerant networks (DTNs) exploits the mechanism of store‐carry‐and‐forward. In this routing mechanism, mobility plays an important role, and we need to control the mobility of nodes around the network to help with carrying messages from the source to the destination. This is a difficult problem because the nodes in the network may move arbitrarily and it is difficult for us to determine when the nodes should move faster to help the data transmission while considering the complicated energy consumption in such a network. At the same time, for most DTNs, the system energy is limited, and energy efficient algorithms are crucial to maximizing the message delivery probability while reducing the delivery cost. In this paper, we investigate the problem of energy efficient mobility speed control in epidemic routing of DTN. We model the message dissemination process under variable mobility speed by a continuous‐time Markov model. With this model, we then formulate the optimization problem of the optimal mobility control for epidemic routing and obtain the optimal policy from the solution of this optimization problem. Furthermore, extensive numerical results demonstrate that the proposed optimal policy significantly outperforms the static policy with constant speed, in terms of energy saving. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Multicasting for delay-tolerant networks (DTNs) in sparse social network scenarios is a challenge due to the deficiency of end-to-end paths. In social network scenarios, the behaviors of their nodes are controlled by human beings, and node mobility is the same as that of humans. To design the multicasting algorithms for DTNs, therefore, it would be promising to capture the intrinsic characteristics of relationships among these nodes. In this paper, multicasting in DTNs is regarded as a message dissemination issue in social networks, and an egocentric network focused community aware multicast routing algorithm (ENCAR) is proposed. As distinct from some social-based routing algorithms which only focus on centrality analysis, ENCAR is an utility based and hierarchical routing algorithm, its utility function is constructed on the basis of centrality analysis and destination-oriented contact probability. We take notice of clustering phenomenon in social networks, and present the community aware forwarding schemes. In addition, to simulate the mobility of individuals in social networks, a novel community based random way point mobility model is also presented. In this paper, the performance of ENCAR is theoretically analyzed and further evaluated on simulator ONE. Simulation results show that ENCAR outperforms most of the existing multicast routing algorithms in routing overhead, on condition that delivery ratio is relatively high, with other significant parameters guaranteed to perform well.  相似文献   

12.
Delay and Disruption Tolerant Networks are made up of mobile wireless nodes which may experience major message delivery restrictions. Such restrictions are the result of intermittent connectivity and scattered topology. Within these networks, messages can be detained for long periods of time or never be delivered. Existing solutions that purport improved message delivery rates modify routing protocols to perform integrity verification with each hop, resulting in routing overhead and, very often, unnecessary processing costs. This article proposes a scheme, named EMCOD, which decreases message delivery delay, while minimally increasing the processing overheads. To achieve this, EMCOD uses data encoding and interleaving to create messages. The original data is reassembled from some of the messages received, without the need to wait for all messages to be received. In scenarios subject to long delays and/or significant packet loss rates, it is possible to reduce original data recovery times by more than 50%. The processing overhead resulting from the encoding procedures is offset by the data recovery capabilities, which effectively decreases network overheads by more than 60%, in the same scenarios. EMCOD modifies the Bundle Layer, without interfering with the remaining layers, making it possible to route the messages through nodes that do not implement the proposed scheme.  相似文献   

13.
Opportunistic networks (OppNets) are composed of wireless nodes opportunistically communicating with each other. These networks are designed to operate in a challenging environment characterized by high delay, intermittent connectivity, and no guarantee of fixed path between the sender and the destination nodes. One of the most vital issues in designing and maintaining practical networks over a time period is the security of the messages flowing in OppNets. This paper proposes a new method called message trust‐based secure multipath routing protocol (MT‐SMRP) for opportunistic networks. Various routing protocols such as ProPHet, Epidemic, and HiBOp, to name a few, have been proposed for OppNets, but none of these have applied a secure multipath routing technique. The proposed MT‐SMRP scheme relays the message to the destination through the disjoint paths, each applying a soft‐encryption technique to prevent message fabrication attacks. Simulations are conducted using the Haggle Infocom'06 real mobility data traces, showing that when time‐to‐live is varied, (1) the proposed MT‐SMRP scheme outperforms D‐MUST by 18.10%, 7.55%, 3.275%, respectively, in terms of delivery probability, messages dropped, and average latency; (2) it also outperforms SHBPR by 21.30%, 7.44%, and 4.85%, respectively, in terms of delivery probability, messages dropped, and average latency. Under similar performance metrics, the performance of MT‐SMRP is also shown to be better than that of D‐MUST and SHBPR when the buffer size (respondents. the message generation interval) is varied.  相似文献   

14.
Delay/disruption tolerant networks (DTNs) are potentially applicable in the challenged scenarios like post‐disaster environments. In such networks, data forwarding generally relies on the mutual cooperation of the nodes. However, in reality, despite the availability of necessary resources for data forwarding, a node could misbehave by dropping messages received from other nodes with whom it has no strong social ties. Such a node is called a socially selfish node, which would cause a poor delivery ratio in the network. In this paper, we aim to address the problem of multicast data forwarding in the presence of such selfish nodes, by means of efficient relay selection in DTNs. First, we define a realistic reputation model, in contrast to existing models, to define the socially selfish/misbehaving nodes in the network. Further, a game‐theoretic analysis is carried out that implies data forwarding cost is also an influential parameter in handling selfishness/misbehavior. Subsequently, the problem is formulated as a constrained optimization problem, which is NP hard. Therefore, a heuristic is proposed by combining the reputation of a node and the cost of message forwarding to appropriately identify relay nodes, thus improve the performance of the multicast message delivery in the network. We utilize a social metric, centrality to minimize the message forwarding cost in terms of the number of relay nodes. Finally, the comparative performance evaluation in ONE simulator with practical scenarios shows the superiority of the proposed scheme over the other prominent schemes.  相似文献   

15.
In this paper, we study the case of a limited number of mobile nodes trying to communicate in a large geographic area, forming a delay/disruption tolerant network (DTN). In such networks the mobile nodes are disconnected for significantly long periods of time. Traditional routing protocols proposed for mobile ad hoc networks or mesh networks, which assume at least one path between each source and destination, are ineffective in DTNs. One approach to improve communication is through gossip based protocols because these protocols do not rely on a fixed path. Another approach is to control the movement of the mobile nodes and/or use special mobile nodes called ferry nodes. Others try to employ a fixed infrastructure including stationary relay points. One scheme in stationary relay point approach is to use base stations as relay points which need their own power supply. In this paper, we study a passive approach where mobile nodes deposit/retrieve messages to/ from known stationary locations in the geographic region. Messages are delivered from a source by being deposited at one or more locations that are later visited by the destination. A proposed implementation of our approach using read/writable passive Radio Frequency Identification (RFID) tags, one per point location, is considered in this work. Passive RFID technology is desirable because it operates wirelessly and without the need for attached power. Our simulation results indicate that our approach can achieve competitive message delay and delivery rates. We also demonstrate several techniques for optimizing the stationary relay node placement, namely relay pruning, probability based relay distribution and a genetic algorithm; the genetic algorithm is shown to provide the best solutions to this problem.  相似文献   

16.
车载网络(Vehicular ad hoc networks,VANETs)是一种特殊形式的网络,具有节点高速移动、拓扑频繁的变化的特性。这些特性为消息的传播带来挑战。路由机制是实现消息传递的关键因素。地理位置路由被广泛地应用于VANETS,要求节点周期广播beacon消息。然而,节点周期地广播beacon消息,降低了路由性能,特别是在城市区域,由于节点密集,每个节点均广播beacon消息,恶化了路由性能。为此,针对城市环境,提出基于beacon控制的路由协议RPBC(Routing protocol with beacon control)。在RPBC中,并非每个节点广播beacon消息,而设置有效的机制选择部分节点广播,从而降低了beacon冗余,同时,采用最短路径算法,减少数据传输跳数。仿真结果表明,提出的RBPC在分组投递率、端到端传输时延以及路由开销方面均有较好的性能。  相似文献   

17.
For the energy limited wireless sensor networks, the critical problem is how to achieve the energy efficiency. Many attackers can consume the limited network energy, by the method of capturing some legal nodes then control them to start DoS and flooding attack, which is difficult to be detected by only the classic cryptography based techniques with common routing protocols in wireless sensor networks (WSNs). We argue that under the condition of attacking, existing routing schemes are low energy-efficient and vulnerable to inside attack due to their deterministic nature. To avoid the energy consumption caused by the inside attack initiated by the malicious nodes, this paper proposes a novel energy efficiency routing with node compromised resistance (EENC) based on Ant Colony Optimization. Under our design, each node computes the trust value of its 1-hop neighbors based on their multiple behavior attributes evaluation and builds a trust management by the trust value. By this way, sensor nodes act as router to achieve dynamic and adaptive routing, where the node can select much energy efficiency and faithful forwarding node from its neighbors according to their remaining energy and trust values in the next process of data collection. Simulation results indicate that the established routing can bypass most compromised nodes in the transmission path and EENC has high performance in energy efficiency, which can prolong the network lifetime.  相似文献   

18.
Wang  Weitao  Bai  Yuebin  Feng  Peng  Huang  Jun  Sha  Mo  Tantai  Jianpei 《Wireless Personal Communications》2021,118(1):575-598

In delay-tolerant networks (DTNs), intermittent network connectivity and lack of global system information pose serious challenges to achieve effective data forwarding. Most state-of-the-art DTN routing algorithms are based on hill-climbing heuristics in order to select the best available next hop to achieve satisfactory network throughput and routing efficiency. An adverse consequence of this approach is that a small subset of good users take on most of the forwarding tasks. This can quickly deplete scarce resources (e.g. storage, battery, etc.) in heavily utilized devices which degrades the network reliability. A system with a significant amount of traffic carried by a small number of users is not robust to denial of service attacks and random failures. To overcome these deficiencies, this paper proposes a new routing algorithm, DTN-Balance, that takes the forwarding capacity and forwarding queue of the relay nodes into account to achieve a better load distribution in the network. For this, we defined a new routing metric called message forwarding utility combining nodal available bandwidth and forwarding workload. Applying small world theory, we impose an upper bound on the end-to-end hop count that results in a sharp increase in routing efficiency. Queued messages in a forwarding node are arranged by DTN-Balance based on message dropping utility metric for a more intelligent decision in the case of a message drop. The performance of our method is compared with that of the existing algorithms by simulations on real DTN traces. The results show that our algorithm provides outstanding forward efficiency at the expense of a small drop in the throughput.

  相似文献   

19.
We propose and analyze a class of integrated social and quality of service (QoS) trust-based routing protocols in mobile ad-hoc delay tolerant networks. The underlying idea is to incorporate trust evaluation in the routing protocol, considering not only QoS trust properties but also social trust properties to evaluate other nodes encountered. We prove that our protocol is resilient against bad-mouthing, good-mouthing and whitewashing attacks performed by malicious nodes. By utilizing a stochastic Petri net model describing a delay tolerant network consisting of heterogeneous mobile nodes with vastly different social and networking behaviors, we analyze the performance characteristics of trust-based routing protocols in terms of message delivery ratio, message delay, and message overhead against connectivity-based, epidemic and PROPHET routing protocols. The results indicate that our trust-based routing protocols outperform PROPHET and can approach the ideal performance obtainable by epidemic routing in delivery ratio and message delay, without incurring high message overhead. Further, integrated social and QoS trust-based protocols can effectively trade off message delay for a significant gain in message delivery ratio and message overhead over traditional connectivity-based routing protocols.  相似文献   

20.
H.  W.  M.H.  E.W.  C.   《Ad hoc Networks》2007,5(4):444-461
Wireless mobile ad hoc networks (MANETs) have the potential for use in important application environments, such as remote environmental monitoring, where energy resources are limited. Efficient power management is necessary to allow these networks to operate over a long period of time. One of the key factors affecting the design of power management mechanisms is the routing protocol in use within the network. In this paper, we investigate the Message ferrying (MF) routing paradigm as a means to save energy while trading off data delivery delay. In MF, special nodes called ferries move around the deployment area to deliver messages for nodes. While this routing paradigm has been developed mainly to deliver messages in partitioned networks, here we explore its use in a connected MANET. The reliance on the movement of ferries to deliver messages increases the delivery delay if a network is not partitioned. However, delegating message delivery to ferries provides the opportunity for nodes to save energy by aggressively disabling their radios when ferries are far away. To exploit this feature, we present a power management framework, in which nodes switch their power management modes based on knowledge of ferry location. We evaluate the performance of our scheme using ns-2 simulations and compare it with a multihop routing protocol, dynamic source routing (DSR). Our simulation results show that MF achieves energy savings as high as 95% compared to DSR without power management and still delivers more than 98% of messages. In contrast, a power-managed DSR delivers many fewer messages than MF to achieve similar energy savings. In the scenario of heavy traffic load, the power-managed DSR delivers less than 20% of messages. MF also shows robust performance for highly mobile nodes, while the performance of DSR suffers significantly. Thus, delay tolerant applications can use MF rather than a multihop routing protocol to save energy efficiently when both routing approaches are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号