首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In the thymus, immature T cells are positively and negatively selected by multiple interactions between their Ag receptors (TCRs) and self MHC/peptide complexes expressed on thymic stromal cells. Here we show that in the milieu of negative selection on physiological self class II MHC/peptide complexes (Abwt), a single class II/peptide complex AbEp52-68 positively selects a number of TCRs with various Ag specificities. This TCR repertoire is semidiverse and not biased toward Ep-like Ags. Our finding implies that the degeneracy of positive selection for peptide ligands exceeds peptide-specific negative selection and is essential to increase the efficiency and diversity of the repertoire so that T cells with the same Ag specificity can be selected by different self MHC/ peptide complexes.  相似文献   

2.
The TCRs expressed on T lymphocytes recognize foreign peptides bound to MHC molecules. This reactivity is the basis of specific immune response to the foreign Ag. How such specificities are generated in the thymus is still being debated. Signals generated through TCR upon interaction with self MHC-peptide complexes are critical for maturation of the CD4+ helper and CD8+ cytotoxic subsets. We have observed maturation of CD4+ but not CD8+ T cells in Ly-6A.2 transgenic MHC null mice. Since there can be no interactions with MHC molecules in these mice, these CD4+ cells must express the T cell repertoire that exists before positive and negative selection. Interestingly, despite an absence of selection by MHC molecules, the CD4+ cells that mature recognize MHC molecules at a frequency as high as in CD4+ cells in normal mice. These results demonstrate that: 1) the germline sequences encoding TCRs are biased toward reactivity to MHC molecules; and 2) CD4+ cells as opposed to CD8+ cells have distinct lineage commitment signals. These results also suggest that signals originating from Ly-6 can promote or substitute for signals generated from TCR that are required for positive selection. Moreover, this animal model offers a system to study T cell development in the thymus that can provide insights into mechanisms of lineage commitment in developing T cells.  相似文献   

3.
We have previously reported that efficient selection of the mature CD4+ T cell repertoire requires a functional interaction between the CD4 coreceptor on the developing thymocyte and the MHC class II molecule on the thymic epithelium. Mice expressing a class II protein carrying the EA137/VA142 double mutation in the CD4 binding domain develop fewer than one-third the number of CD4+ T cells found in wild-type mice. In this report we describe the functional characteristics of this population of CD4+ T cells. CD4+ T cells that develop under these conditions are predicted to be a CD4-independent subset of T cells, bearing TCRs of sufficient affinity for the class II ligand to undergo selection despite the absence of accessory class II-CD4 interactions. We show that CD4+ T cells from the class II mutant mice are indeed CD4 independent in their peripheral activation requirements. Surprisingly, we find that CD4+ T cells from the class II mutant mice, having been selected in the absence of a productive class II-CD4 interaction, fail to functionally engage CD4 even when subsequently provided with a wild-type class II ligand. Nevertheless, CD4+ T cells from EA137/VA142 class II mutant mice can respond to T-dependent Ags and support Ig isotype switching.  相似文献   

4.
Thymic epithelial cell lines isolated from hyperplastic thymi of transgenic mice over-expressing human papilloma viral oncogenes E6 and E7 constitutively displayed a phenotype consistent with a cortical origin. Exposure to IFN-gamma induced class II MHC and ICAM-1 expression, and up-regulated expression of VCAM-1 and class I MHC molecules. CD40 expression was maximally induced by a combination of IFN-gamma and IL-1, with lower levels of induction observed with a mixture of IFN-gamma and tumor necrosis factor (TNF)-alpha or TNF-alpha alone. B7-1 or B7-2 was not expressed constitutively or in response to cytokines. These stromal cells supported the development of CD4 single-positive (SP) cells in reaggregate co-cultures with CD4+ CD8+ thymocytes from TCR transgenic mice, but did not stimulate class II MHC-restricted, moth cytochrome c (MCC)-reactive T cells in vitro. The behavior of the culture system was consistent with positive selection, i.e. increased numbers of CD4 SP cells, gain of antigen responsiveness, and requirement for epithelial class II MHC products. Some variants of these stromal cell lines required exogenous MCC peptide in the reaggregation cultures (RC) for positive selection to occur. While a low concentration of MCC peptide (0.01-0.1 microM) significantly enhanced the accumulation of CD4 SP cells, higher concentrations of peptide (1-10 microM) resulted in recovery of predominantly CD4- CD8- and CD4(low) CD8- cells. Thymocytes recovered from RC containing low, but not high concentrations of peptide responded to MCC peptide in secondary cultures with splenic antigen-presenting cells.  相似文献   

5.
T lymphocyte recognition of infected cells is mediated by T cell receptors (TCRs) interacting with their ligands, self-major histocompatibility complex (MHC) molecules complexed with pathogen-derived peptides. Serial TCR interactions with potentially small numbers of MHC/ peptide complexes on infected cells transmit signals that result in T lymphocyte expansion and activation of effector functions. The impact of TCR affinity for MHC/peptide complexes on the rate or extent of in vivo T cell expansion is not known. Here we show that in vivo expansion of complex T cell populations after bacterial infection is accompanied by an increase in their overall affinity for antigen. T cell populations that have undergone additional rounds of in vivo expansion express a narrower range of TCRs, have increased sensitivity for antigen in cytotoxic T lymphocyte assays, and bind MHC/peptide complexes with greater affinity. The selective expansion of higher affinity T cells provides an in vivo mechanism for optimizing the early detection of infected cells.  相似文献   

6.
We examined the role of the peptide/MHC ligand in CD4+ T cell differentiation into Th1 or Th2 cells using a TCR alphabeta transgenic mouse specific for hemoglobin (Hb)(64-76)/I-Ek. We identified two altered peptide ligands of Hb(64-76) that retain strong agonist activity but, at a given dose, induce cytokine patterns distinct from the Hb(64-76) peptide. The ability of these peptides to produce distinct cytokine patterns at identical doses is not due to an intrinsic qualitative property. Each peptide can induce Th2 cytokines at low concentrations and Th1 cytokines at high concentrations and has a unique range of concentrations at which these distinct effects occur. The pattern of cytokines produced from limiting dilution of naive T cells demonstrated that the potential to develop an individual Th1 or Th2 cell is stochastic, independent of Ag dose. We propose that the basis for the observed effects on the Th1/Th2 balance shown by the altered peptide ligands and the amount of Ag dose involves the modification of soluble factors in bulk cultures that are the driving force that polarize the population to either a Th1 or Th2 phenotype.  相似文献   

7.
In the final stages of thymic development, immature T cells undergo three distinct processes (positive selection, negative selection, and lineage commitment) that all depend on interactions of thymocyte TCRs with MHC molecules. It is currently thought that TCRs are preferentially restricted by either MHC class I or class II molecules. In this report, we present direct evidence that the TCR previously described as H-Y/H-2Db specific cross-reacts with H-2IAb if expressed in CD4+ cells. We also demonstrate an increase in thymocyte numbers in H-Y TCR-trangenic mice deficient in MHC class II, suggesting a relatively discrete form of negative selection by MHC class II compared with that induced by H-Y/H-2Db. We propose that inability to generate CD4+ T cells expressing H-Y TCR in different experimental settings may be due to tolerance to self-MHC class II. These results, therefore, support an intriguing possibility that tolerance to self may influence and/or interfere with the outcome of the lineage commitment.  相似文献   

8.
T cells specific for nucleosomal autoepitopes are selectively expanded in lupus mice and these Th cells drive autoimmune B cells to produce pathogenic antinuclear antibodies. We transfected the TCR-alpha and -beta chain genes of a representative, pathogenic autoantibody-inducing Th clone specific for the nucleosomal core histone peptide H471-94 into TCR-negative recipient cells. Although the autoimmune TCRs were originally derived from SNF1 (I-Ad/q) mice, the transfectants could recognize the nucleosomal autoepitope presented by APC-bearing I-A molecules of all haplotypes tested, as well as human DR molecules. Competition assays indicated that the autoepitopes bound to the MHC class II groove. Most remarkably, MHC-unrestricted recognition of the nucleosomal peptide epitope was conferred by the lupus TCR-alpha chain even when it paired with a TCR-beta chain of irrelevant specificity. Several other disease-relevant Th clones and splenic T cells of lupus mice had similar properties. The TCR-alpha chains of these murine lupus Th clones shared related motifs and charged residues in their CDRs, and similar motifs were apparent even in TCR-alpha chains of human lupus Th clones. The lupus TCR-alpha chains probably contact the nucleosomal peptide complexed with MHC with relatively high affinity/avidity to sustain TCR signaling, because CD4 coreceptor was not required for promiscuous recognition. Indeed, pathogenic autoantibody-inducing, CD4-negative, TCR-alphabeta+ Th cells are expanded in systemic lupus erythematosus. These results have implications regarding thymic selection and peripheral expansion of nucleosome-specific T cells in lupus. They also suggest that universally tolerogenic epitopes could be designed for therapy of lupus patients with diverse HLA alleles. We propose to designate nucleosomes and other antigens bearing universal epitopes "Pantigens" (for promiscuous antigens).  相似文献   

9.
The property of listeriolysin (LLO) to introduce soluble passenger proteins into the cytosol of antigen-presenting cells allows the induction of CD8+ cytotoxic T cells against such antigens. To overcome the potential problem of presentation of the immunodominant epitope LL091-99 by H-2Kd, a variant LLO92A was established in which Tyr 92 was replaced by Ala. Immunization of BALB/c mice with purified LLO92A failed to stimulate cytotoxic T cells specific for either the epitope LLO91-99 or for any other LLO-derived peptide. Injection of mixtures of purified LLO92A and soluble nucleoprotein (NP) of influenza virus into mice resulted in a strong cytotoxic T cell response exclusively directed against NP. The LLO92A variant was successfully used to generate, propagate and characterize a CD8 T cell line specific for the membrane-bound virulence factor ActA of Listeria monocytogenes. Interestingly, wildtype ActA bound to the surface of live L. monocytogenes was not presented by MHC class I molecules to the CD8+ T cell line.  相似文献   

10.
T cell activation by peptide/MHC complexes, superantigens, or mAbs induces the down-regulation of cell surface TCRs. We addressed the question of whether TCR down-modulation affects only TCRs that had directly interacted with their ligand or whether down-modulation could also affect TCRs that had not interacted with their ligand. To this end, we generated T cells coexpressing equal levels of two different TCRs by transfecting the appropriate cDNAs into cells of the human T cell line, Jurkat. Each set of TCRs can be distinguished by means of anti-Vbeta mAbs and can be stimulated separately with peptide Ag, bacterial superantigens, or mAbs. We found that activation of these cells with each of these stimuli down-modulated not only directly stimulated TCR complexes but also unstimulated ones. Comodulation of stimulated and unstimulated receptors may reflect functional interactions between surface TCRs that could take place during Ag or superantigen recognition by T cells without the need for ligand cross-linking. Consistent with this idea, both stimulated and unstimulated receptors colocalized in patches on the cell surface after activation.  相似文献   

11.
The response exhibited by the immune system to viral and other foreign antigens consists of antibody-mediated and T cell-mediated immunity. Structural and molecular biological studies have shown that the antibody response is tailored to provide exquisite specificity by generating binding pockets that are complementary in shape as well as in charge to the antigen. On the other hand, the cellular response uses T-cell receptors (TCRs) and the major histocompatibility complex (MHC) antigens. Structural information on the TCRs is not yet available, but the crystal structures of several MHC class I molecules have shown how one MHC molecule can bind many different peptide sequences that share only the common anchor residue positions that determine allele specificity. MHC class I interactions with the peptide backbone at the N and C termini explain the high specificity of the binding groove for peptide ligands and suggest a universal mode of recognition for peptides to MHC class I molecules. Peptide-MHC class II interactions are less well understood, although recent structural work has shown important differences in the binding clefts of MHC class I and II that lead to longer peptides being bound to class II molecules. Detailed analysis at the molecular level has indicated that conformational changes in both antibodies and MHC molecules occur upon antigen binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The molecular interactions between the CD8 co-receptor dependent N15 and N26 T cell receptors (TCRs) and their common ligand, the vesicular stomatitis virus octapeptide (VSV8) bound to H-2Kb, were studied to define the docking orientation(s) of MHC class I restricted TCRs during immune recognition. Guided by the molecular surfaces of the crystallographically defined peptide/MHC and modeled TCRs, a series of mutations in exposed residues likely contacting the TCR ligand were analyzed for their ability to alter peptide-triggered IL-2 production in T cell transfectants. Critical residues which diminished antigen recognition by 1000 to 10,000-fold in molar terms were identified in both N15 Valpha (alphaE94A or alphaE94R, Y98A and K99) and Vbeta (betaR96A, betaW97A and betaD99A) CDR3 loops. Mutational analysis indicated that the Rp1 residue of VSV8 is critical for antigen recognition of N15 TCR, but R62 of H-2Kb is less critical. More importantly, the alphaE94R mutant could be fully complemented by a reciprocal charge reversal at Kb R62 (R62E). This result suggests a direct interaction between N15 TCR Valpha E94R and Kb R62E residues. As Rp1 of VSV8 is adjacent to R62 in the VSV8/Kb complex and essential for T cell activation, this orientation implies that the N15 Valpha CDR3 loop interacts with the N-terminal residues of VSV8 with the Valpha domain docking to the Kb alpha2 helix while the N15 Vbeta CDR3 loop interacts with the more C-terminal peptide residues and the Vbeta domain overlies the Kb alpha1 helix. An equivalent orientation is suggested for N26, a second VSV8/Kb specific TCR. Given that genetic analysis of two different class II MHC-restricted TCRs and two crystallographic studies of class I restricted TCRs offers a similar overall orientation of V domains relative to alpha-helices, these data raise the possibility of a common docking mode between TCRs and their ligands regardless of MHC restriction.  相似文献   

13.
The kinetics of acid release by a mixture of T cells and antigen presenting cells were measured with a microphysiometer during a brief exposure to antigenic peptides. We find that some of the early biochemical events that lead to cellular proliferation cause a specific increase in the rate of acid release. The duration of this increase in acid release reflects the life-time of the peptide-MHC complexes. Peptides that form long-lived complexes produce a response that is stable for more than an hour. Serial TCR engagement is suggested by the observation that the amplitude of this stable response can be rapidly shifted up or down with additional agonist peptide or with antibodies that block T cell receptor binding. Cells briefly exposed to a peptide that forms short-lived peptide-MHC complexes produce a response that decays rapidly as peptide is washed away. A quantitative analysis of the kinetics of this decay in acidification demonstrates that intercellular TCR-ligand reactions are rapid, reversible, and of low apparent affinity with < 20% of peptide-MHC ligand bound to a TCR at any one time. These results demonstrate that the fraction of peptide-MHC ligands bound to TCRs at the cell-cell interface is no higher than anticipated from the affinities observed in solution for isolated TCRs and ligands.  相似文献   

14.
The TCR found on CD4 T cells recognizes peptides bound to self MHC class II molecules as well as non-self MHC class II molecules. We have used the receptor on a cloned T cell line called D10.G4.1 (D10) to perform a structure-function analysis of this interaction. The D10 T cell clone recognizes not only a peptide from conalbumin (CA-wt) bound to syngeneic I-Ak against which it was raised, but also the allogeneic MHC molecules I-A(b,v,p,q,d). In the present study, we show that residue 30 in complementarity-determining region 1 (CDR1) of the TCR alpha-chain interacts with the I-A alpha-chain at hvr2 (residues 52, 53, and 55). We also show that residue 51 in CDR2 of the TCR alpha-chain interacts with the peptide at peptide residue 2. Finally, we show that residue 29 in CDR1 of the TCR beta-chain affects recognition of the glutamic acid at residue 66 in the I-A beta-chain. These data suggest an orientation of TCR relative to its peptide:MHC class II ligands. We argue that this orientation will be shared by all CD4 TCRs, and that it is only subtly different from the common orientation proposed for receptors binding to MHC class I.  相似文献   

15.
We have produced a TCR transgenic mouse that uses a TCR derived from a Th1 clone that is specific for residues 64 to 76 of the d allele of murine hemoglobin presented by I-Ek. Examination of these TCR transgenic mice on an H-2(k/k) background that expressed the nonstimulatory s allele of murine hemoglobin revealed that these mice express many endogenous TCR chains from both alpha and beta loci. We found that this transgenic TCR is also very inefficient at mediating beta selection, thereby showing a direct linkage between beta selection and allelic exclusion of TCR beta. We have also examined these mice on MHC backgrounds that have reduced levels of I-Ek and found that positive selection of cells with high levels of the transgenic TCR depends greatly on the ligand density. Decreasing the selecting ligand density is a means of reducing the number of available selecting niches, and the data reveal that the 3.L2 TCR is used sparingly for positive selection under conditions where the number of niches becomes limiting. The results, therefore, show a way that T cells may get to the periphery with two self-restricted TCRs: one that efficiently mediates positive selection, and another that is inefficient at positive selection with the available niches.  相似文献   

16.
In order to facilitate the identification of T-cell epitopes as useful components of synthetic vaccines, we investigated the role of MHC molecules as the restriction element for the recognition of epitopes by the alpha beta receptor of T cells. MHC molecules are able to present thousands of different peptides to T cells, with all the peptides presented by one distinct type of MHC sharing common structural features. Our group analyzed these common characteristics concerning peptide length (only MHC I ligands) and anchor positions (MHC I and II ligands) occupied by a small set of closely related amino acids. Until now, for more than fifty MHC proteins allele-specific "peptide motifs" have been defined. The exact knowledge of MHC I peptide motifs allows for a prediction of CTL epitopes, and this kind of prediction has been successful in many cases over the last three years.  相似文献   

17.
Engagement of alpha-beta T cell receptors (TCRs) induces many events in the T cells bearing them. The proteins that transduce these signals to the inside of cells are the TCR-associated CD3 polypeptides and zeta-zeta or zeta-eta dimers. Previous experiments using knockout (KO) mice that lacked zeta (zeta KO) showed that zeta is required for good surface expression of TCRs on almost all T cells and for normal T cell development. Surprisingly, however, in zeta KO mice, a subset of T cells in the gut of both zeta KO and normal mice bore nearly normal levels of TCR on its surface. This was because zeta was replaced by the Fc epsilon RI gamma (FcR gamma). These cells were relatively nonreactive to stimuli via their TCRs. In addition, a previous report showed that zeta replacement by the FcR gamma chain also might occur on T cells in mice bearing tumors long term. Again, these T cells were nonreactive. To understand the consequences of zeta substitution by FcR gamma for T cell development and function in vivo, we produced zeta KO mice expressing FcR gamma in all of their T cells (FcR gamma TG zeta KO mice). In these mice, TCR expression on immature thymocytes was only slightly reduced compared with controls, and thymocyte selection occurred normally and gave rise to functional, mature T cells. Therefore, the nonreactivity of the FcR gamma + lymphocytes in the gut or in tumor-bearing mice must be caused by some other phenomenon. Unexpectedly, the TCR levels of mature T cells in FcR gamma TG zeta KO mice were lower than those of controls. This was particularly true for the CD4+ T cells. We conclude that FcR gamma can replace the functions of zeta in T cell development in vivo but that TCR/CD3 complexes associated with FcR gamma rather than zeta are less well expressed on cells. Also, these results revealed a difference in the regulation of expression of the TCR/CD3 complex on CD4+ and CD8+ T cells.  相似文献   

18.
Clonal activation of CD4+ and CD8+ T lymphocytes depends on binding of peptide-major histocompatibility complex (MHC) molecule complexes by their alpha/beta receptors, eventually resulting in sufficient aggregation to initiate second messenger generation. The nature of intracellular signals resulting from such T cell receptor (TCR) occupancy is believed to be independent of the specific structure of the ligand being bound, and to vary quantitatively, not qualitatively, with the concentration of ligand offered and the affinity of the receptor for the peptide-MHC molecule complex. In contrast to the expectations of this model, the analysis of the response of a T helper type 1 clone to mutant E alpha E beta k molecules in the absence or presence of a peptide antigen revealed that peptide inhibited the interleukin 2 (IL-2) response to an otherwise allostimulatory mutant form of this MHC class II molecule. The inhibition was not due to competition for formation of alloantigen, it required TCR recognition of peptide-mutant MHC molecule complexes, and it decreased IL-2 production without affecting receptor-dependent IL-3, IL-2 receptor alpha, or size enlargement responses. This preferential reduction in IL-2 secretion could be correlated with the costimulatory signal dependence of this cytokine response, but could not be overcome by crosslinking the CD28 molecule on the T cell. These results define a new class of TCR ligands with mixed agonist/antagonist properties, and point to a ligand-related variation in the quality of clonotypic receptor signaling events or their integration with other signaling processes. It was also found that a single TCR ligand showed greatly different dose thresholds for the elicitation of distinct effector responses from a cloned T cell population. The observations that changes in ligand structure can result in qualitative alterations in the effects of receptor occupancy and that quantitative variations in ligand density can be translated into qualitative differences in T cell responses have important implications for models of intrathymic selection and control of the results of active immunization.  相似文献   

19.
Both positive and negative selection of immature T cells rely on engagement of their antigen-specific receptors (TCR) by peptide in association with proteins encoded in the major histocompatibility complex (MHC) protein. The decision made between these two outcomes seems to be determined by the number of TCR engaged by peptide-MHC complexes. It has been unclear how such a mechanism can be reconciled with evidence that positive and negative selection occur in different thymic compartments and are mediated by different antigen-presenting cells (APCs). In this study we demonstrate that the level of class I MHC protein is 10-fold higher on thymic dendritic cells, which mediate the negative selection of immature T cells, than on thymic epithelial cells, which mediate for positive selection. We also demonstrate that as little as a 3-fold increase in the level of a particular cognate peptide-MHC ligand is sufficient to result in negative rather than positive selection. The results suggest that quantitative differences in the level of expression of class I MHC proteins on thymic epithelial and dendritic cells contribute to the opposing roles these cells play in forming the repertoire of mature class I MHC restricted (CD8+) T cells.  相似文献   

20.
The peptide-binding site of the murine MHC class I molecule H-2Kb contains a deep C pocket, that is critical for peptide binding, as it accepts the anchor phenylalanine or tyrosine residue located in the middle (position 5, P5F/Y) of H-2Kb binding peptides. H-2Kb predominantly binds octameric peptides. By both criteria, H-2Kb is unique among the known murine and human class I molecules, none of which have a deep C pocket or preferentially select octamers. We investigated the relative importance of the C pocket in peptide selection and binding by the MHC. An MHC class I H-2Kb variant, Kbw9, predicted to contain no C pocket, was engineered by replacing valine at MHC9 with tryptophan. This mutation drastically altered the selection of peptides bound to Kbw9. The Kbw9 molecule predominantly, if not exclusively, bound nonamers. New peptide anchor residues substituted for the loss of the P5F/Y:C pocket interaction. P3P/Y, which plays an auxiliary role in binding to Kb, assumed the role of a primary anchor, and P5R was selected as a new primary anchor, most likely contacting the E pocket. These experiments demonstrate that the presence of a deep C pocket is responsible for the selection of octameric peptides as the preferred ligands for Kb and provide insight into the adaptation of peptides to a rearranged MHC groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号